
Thomas Petereder

NFC based platforms in gaming. Reverse
engineering Nintendos "Amiibo"

Bachelor Thesis

Computer Science

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as
specifically permitted in writing by the publishers, as allowed under the terms and
conditions under which it was purchased or as strictly permitted by applicable
copyright law. Any unauthorized distribution or use of this text may be a direct
infringement of the author s and publisher s rights and those responsible may be
liable in law accordingly.

Imprint:

Copyright © 2015 GRIN Verlag
ISBN: 9783668069411

This book at GRIN:

https://www.grin.com/document/308306

Thomas Petereder

NFC based platforms in gaming. Reverse engineering
Nintendos "Amiibo"

GRIN Verlag

GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by
students, college teachers and other academics as e-book and printed book. The
website www.grin.com is an ideal platform for presenting term papers, final papers,
scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Near eld communication based
platforms in gaming

Thomas Petereder

B A C H E L O R A R B E I T

eingereicht am
Fachhochschul-Bachelorstudiengang

Mobile Computing

in Hagenberg

im September 2015

Contents

v

Preface

Abstract

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 1

1.2.1 Gamification . 1
1.2.2 Mixed reality gaming 2
1.2.3 “Toy to life”-concept 2

2 Near field communication 9
2.1 Radio frequency identification (RFID) 9

2.1.1 Active RFID . 10
2.1.2 Passive RFID . 10

2.2 Near field communication (NFC) 10
2.2.1 Evolution of NFC . 10
2.2.2 Functional principle 11

2.2.2.1 Power supply 11
2.2.2.2 Data transfer 12
2.2.2.3 Anti-collision 13
2.2.2.4 Signaling technologies 14
2.2.2.5 Communication modes 15

2.2.3 NFC Data Exchange Format (NDEF) 16
2.2.3.1 NDEF Record 16
2.2.3.2 NDEF Message 17
2.2.3.3 NFC Record Type Definition (RTD) 17

3 Reverse engineering Amiibo 19
3.1 NFC tag . 19

3.1.1 NFC Type 2 tags . 19
3.1.1.1 Capability Container (CC) 22

3.1.1.2 TLV structure 22
3.1.1.3 Commands 24

3.1.2 Amiibo Data Page Table 25
3.2 Password . 29

3.2.1 Elliptic curve cryptography 29
3.2.1.1 Definition of elliptic curves 30
3.2.1.2 Computing with elliptic curves 31

3.2.1.2.1 Key Exchange 33
3.2.1.2.2 Message Encryption 33
3.2.1.2.3 Message Decryption 34

3.2.1.3 Signatures 34
3.2.2 Elliptic curve cryptography and Amiibos 36

3.3 Communication protocol . 37
3.3.1 Transmission protocol 38
3.3.2 Communication principle of Amiibos 41

3.4 Software project . 43
3.4.1 Emulating Amiibos . 43
3.4.2 Backing up Amiibos 44

3.4.2.1 Establishing a connection 45
3.4.2.2 Reading the Amiibo’s data 46
3.4.2.3 Writing data to the Amiibo 46

4 Conclusion 48
4.1 Conclusion . 48
4.2 Future of NFC in gaming . 48

A Content of the CD-ROM 52
A.1 Bachelor thesis . 52
A.2 Project files . 52
A.3 Amiibo files . 52
A.4 Literature . 53
A.5 Online sources . 53
A.6 Images . 54

References 55

Preface

As a gamer I like harsh challenges: no Super Smash Bros. opponent can be
too strong, no Super Mario level can be too tricky and no zombie horde
can be too big. The most I thus love about these trials is the satisfying mo-
ment you get whenever the challenge is finally beaten. This bachelor thesis
however has yet been my hardest quest so far. Luckily, I have had several
teammates who accompanied me on this very long journey. Some of them
whom I would like to thank a lot, now that this game is over.

First of all I would like to thank my brother Stefan, as without him I would
probably have never started playing video games in the first place. Without
this strong passion in my life I would also have never chosen the topic of
“NFC based platforms in gaming” for my bachelor thesis.

Furthermore, I would like to thank my parents Albert and Ursula, as they
constantly encouraged me to keep writing. Also I am really grateful that
my close friends, Dominik and Manuel, distracted me from working on the
bachelor thesis every time I already needed a break and some time off in
order to play video games with them.

Moreover, I would like to thank my beloved girlfriend Melanie, as without
her continual help and comfort I surely would have dropped out of university
a long time ago.

And finally I would like to show a very special gratitude to my dear sister
Karin, as she always contributed valuable advice, whenever I needed her
help.

Abstract

Near Field Communication (NFC) gained more and more popularity over
the past few years. As a result, the number of applications suitable for the
daily usage increases continuously. With the gaming industry being one of
the fastest growing markets nowadays, it was just a matter of time, until
these two fields of research met.

This bachelor thesis hence gives an overview about the near field commu-
nication technology and further tries to enlighten the concept of NFC -based
platforms in gaming. In order to give a concrete example for this, a tech-
nology called Amiibo is examined with the corresponding software project
based on it.

Chapter 1

Introduction

1.1 Motivation

It feels as if it just had been yesterday that my elder brother compelled me
to play a video game with him, though this happened back in 1996. The
new concept of playing immediately fascinated me from the very beginning
and ever since I contribute most of my leisure to the topic of video games.
As an approximation I spend an average of about three to five hours per
day playing games.

According to a recently published statistic of the Entertainment Software
Association[10] at least 155 million United States citizens are keen on the
exact same passion. This results in the video game industry being one of the
fastest growing markets worldwide. Therefore, it is hardly surprising that
every year new technologies emerge within this segment.

This bachelor thesis hence is about one of the fastest growing of these
technologies, combining near field communication (NFC) chips with video-
games.

1.2 State of the art

Near field communication has a wide variety of applications, but there is
one that constantly gains more and more popularity amongst the public. It
is the field of gaming, where NFC is nowadays frequently used.

1.2.1 Gami cation

The term gamification describes the utilization of mechanics, logic or rules
that are common in videogames in other non-game related applications. The
purpose of this is mainly to encourage the user to interact with the given
system, as otherwise the initiative of one’s own to do so would be nominal.
Gamification therefore tries to make techniques or content more appealing

1

1. Introduction 2

and to further prolong the overall motivation. This is enhanced due to the
fact that people tend to willingly perform tasks as part of a game, even
though these tasks might be considered boring otherwise.

Taken from Erik Einebrant[15], Nokia (a communications and informa-
tion technology company from Finland) had been one of the first supporters
of NFC and gamification. For this, he listed the example of Nokia Shake-
speare Shu e. Several cards with NFC tags (each storing a line of a famous
Shakespeare quote) must be rearranged in the correct order. To do so, a
NFC enabled phone must be touched to one of these cards, as this causes
the corresponding part of the quote to be played.

1.2.2 Mixed reality gaming

Mixed reality is an environment in between of the real and the virtual world
and is hence a combination of both. Taken from Hinske et al.[19], Benford
stated, that:

Pervasive games extend the gaming experience out into the real
world. While in the game, the player becomes unchained from the
console and experiences a game that is interwoven with the real
world and is potentially available at any place and any time.

Therefore, pervasive games (a subset of mixed reality games) are digital
goods with a strong connection to the real world and therefore they create
a virtual reality. As an example for this, digital interfaces can be integrated
within items of everyday life in such a way that they are hardly distinguish-
able. Based on that fact the “toy to life”-concept emerged.

1.2.3 Toy to life -concept

In 2007 Mattel, an American toy manufacturing company, tried to revolu-
tionize their sector by inventing a completely new concept for toys. For this,
they launched U.B. Funkeys, a series of small plastic figurines containing
NFC tags within. The main idea behind this product was that every figure
could unlock certain features (mini-games, characters, designs, etc.) within
an online video game, once the toys are placed on a NFC -reader connected
to the PC. Though this concept was of great potential, the series flopped
and was discontinued in early 2010. Later on other companies took up this
issue and launched their own products. Therefore, at the time of writing,
three big franchises (and one - Lego Dimensions - being in development)
exist within this segment.

• Skylanders
The video game publisher Activision learned from the mistakes of
their predecessor Mattel and launched the Skylanders series. As Mattel

1. Introduction 3

mainly focused on their product being appealing to collectors, Activi-
sion used their profound knowledge in the field of gaming in order
to better adapt to the target group of gamers. Furthermore, Activi-
sion employed the former iconic PlayStation figure Spyro the Dragon
to their advantage, as becoming the new official mascot for the Sky-
landers series. As of February 2015, the Skylanders series has sold a
total number of 175 million toys since its initial launch in 2011. The
Skylanders series is hence one of the top 20 highest-selling video game
franchises of all time.

Figure 1.1: Examples of Skylanders figurines, adapted from
http://www.cnet.com/au/products/skylanders-trap-team-starter-
pack-android-ios/2/

In order to connect the digital and the physical world, Activision
wrapped a unique storyline around the Skylanders series. For this,
a villain called Kaos invaded the kingdom of Skyland and banished its
inhabitants, the Skylanders, to the human world as toys. Thus it is
the player’s duty to send them back into the game and respectively to
their homes. To do so, a Skylander-toy is placed atop the so-called Por-
tal of Power (a NFC -reader connected to the videogame console via
USB or Bluetooth) and immediately comes to life within the game. As
the videogame itself takes the form of a traditional RPG (role-playing
game)[13] the player is now able to control the unlocked figurine. With
the proceeding progress the character gains more experience and ac-
quires more abilities, which however are all stored on the physical game
piece rather than on the gaming console. As a result, the player can
use the own game characters on any other device, irrespective of the
used console type, with all their attributes and skills being intact.

• Disney Infinity
Thanks to the Skylanders series the way for a commercial application
of NFC in gaming had been smoothed and so it was just a matter
of time that Activision got its first competitor in 2013 with Disney
Infinity.
Disney Infinity is an action-adventure open-world video game (the
player is given significant freedom as being able to move freely through
a virtual world and to approach any objective at any time). Thus

1. Introduction 4

the game has no specific storyline. However, by connecting a Disney
Infinity figurine with the gaming console the specific character, as
well as a campaign strongly connected to the corresponding franchise,
will become unlocked and playable within the game. Altogether the
available figures are all taken from existing Disney and Pixar licenses,
and therefore the assortment is frequently extended.

Figure 1.2: Examples of Disney Infinity figurines, taken from http://
www.v-gamers.com/wp-content/uploads/2014/10/Disney-
Infinity-2.0_Avengers_Gruppe.jpg

• Amiibo
In 2014 Nintendo followed the trend of Skylanders and Disney Infinity
with their own product line, called Amiibo. Until the end of 2014 ap-
proximately 5.7 million Amiibo toys had been sold worldwide, whereas
in May 2015 already 10.5 million units had been shipped.
The characters represented by Amiibos are taken from different Nin-
tendo franchises. As a matter of fact and in strong comparison to the
two competitors, Amiibos are not bound to a single game and there-
fore exhibit a wider variation of applications. For this, two types of
video games need to be differed. The ones that only read data from
the Amiibos and the others with saving permission as well. The first
type mostly will unlock new content within a certain game, such as
new skins (the character’s appearance or costume), new weapons, new
playable characters and so on, whereas the second type however is
a bit more complex. Taking the example of the beat ’em up Super
Smash Bros. (for Nintendo Wii U and Nintendo 3DS), with the aid of
Amiibos, artificial intelligences (AIs) can be trained and stored on the
NFC tag. As a result, one’s play style will be copied by the figurine.

1. Introduction 5

A promotion tournament hosted by Nintendo had shown that the AIs
are even capable of defeating real players with ease, as a Fox McCloud
Amiibo almost had won the tournament and was ranked second place.

Figure 1.3: Examples of Amiibo figurines, taken from http://
www.ingame.de/artikel/amiibo-nintendo-versteht-frustration-der-
kunden-und-verspricht-nachschub/

When Nintendo was founded back in 1889, the company solely retailed
traditional Japanese Hanafuda playing cards. Hence with the lately
announced Amiibo cards they somehow try to go back to their roots.
In this context Amiibo cards are the much cheaper versions of their
figure-based counterparts bringing along the exact same functionality.
However, by selling them in packs of six random cards hidden from
view, the end user is further conduced to collect and to swap cards
with colleagues.

Figure 1.4: Examples of Amiibo cards, taken from http://
www.iheartamiibo.com/wp-content/uploads/2015/07/cards.jpg

Unlike their competitors in the “toy to life”-market, Nintendo shows
to be more innovative in the variety of their product lines. Besides
the profound plastic figure based Amiibos and the Amiibo cards the
company started to offer a collection of Amiibos made of yarn. Shortly
after their release almost the entire stocking of the yarn Amiibos had
been sold and units can hardly be found in retail. Due to this rush

1. Introduction 6

and for the enormous fan-base, Nintendo revealed to even launch an
oversized variation of the popular Green Yarn Yoshi Amiibo by the
end of November 2015.

Figure 1.5: Yarn Amiibos from the Yoshi’s Woolly World collection,
taken from http://www.polygon.com/2015/8/24/9200829/yarn-yoshi-amiibo-
mega-release-date-price

Due to this bachelor thesis, as well as the corresponding software
project being based on Amiibos, this technology and its functional-
ity is described in more detail later on in chapter 3.

• Lego Dimensions
Besides the well-established product line of plastic construction toys,
Lego branched out into the video gaming market since 1997. The enor-
mous variety of cooperating partners enabled Lego to exhibit thou-
sands of sets based upon all different kinds of franchises (like Star
Wars, Jurassic Park, Batman, etc.). Hence this product diversity di-
rectly reflects to their gaming segment as well and furthermore plays
an important role within the upcoming (release date is set to Septem-
ber 2015) “toy to life”-video game of Lego Dimensions. For this, Lego
Dimensions follows the same format as Skylanders, Disney Infinity or
as the Amiibo series, but with NFC -enabled Lego figurines that will,
once scanned, unlock new content (level, vehicles, playable characters,
etc.) within the game. As it is typical for Lego, these figures are sold
as a set of several pieces which need to be connected first, in order to
finally build the proper construct.

Figure 1.6: Examples of Lego Dimensions, taken from http://
www.toysrus.com/graphics/tru_prod_images/LEGO-Dimensions-Fun-
Pack--Emmet--pTRU1-21175848dt.jpg

1. Introduction 7

• Amiibo-Skylander crossover
The Electronic Entertainment Expo (commonly known as E3) as the
world’s biggest annual exhibition for video games is generally used to
announce upcoming video game product lines, consoles and games per
se. Due to the tremendous and overall increasing demand for Skylan-
ders as well as for Amiibos, Activision and Nintendo joined forces and
revealed at 2015’s E3 that both will launch Amiibo-Skylander figures
in a special crossover line-up. For this, Activision made the first move
by introducing their latest Skylanders installment of Skylanders: Super
Chargers, which is going to be released in September 2015.
Special about this product line is that a total amount of two near
field communication tags is integrated within each figure. By twisting
the bottom plate the figurines can either individually function as an
Amiibo or as a Skylander.

Figure 1.7: Examples of the Amiibo-Skylander crossover line-up, taken
from http://www.toysrus.com/graphics/tru_prod_images/LEGO-Dimensions-Fun-
Pack--Emmet--pTRU1-21175848dt.jpg

• Pokémon Rumble
Already one year before the initial rollout of Amiibos, Nintendo launch-
ed their product line of Pokémon Rumble NFC figurines. As this hap-
pened slightly before Disney Infinity emerged, the “toy to life”-concept
was still a niche market back then. Therefore, and due to a lack of
usages for these figures (by scanning, the Pokémon depicted by the
figurine could be used in-game) in solely one mediocre game called
Pokémon Rumble U, this technology never lived up to its expectations.
Nevertheless a total amount of 24 different figures had been launched.
As it is typical for the Pokémon franchise, the so-called pocket mon-
sters are stored in separate capsules, the well-known PokéBalls. This
is another marketing strategy, as the customer never knows which fig-
ure will be received within the next purchase. The Pokémon fan base
however is quite familiar with this concept, as within the Pokémon
series, the gamers are also animated to swap their beloved Pokémon
with each other. As a result this technology was not entirely consid-

1. Introduction 8

ered to be a flop, as at least the dedicated fan base pulled in sales. The
Pokémon Rumble figures are, at the time of writing, not yet completely
discontinued, whereas some units might still be sporadically found in
retail. This is assumed to be a direct consequence of the market en-
trance of Amiibos, as Nintendo clearly revisited this concept with the
latter.

Figure 1.8: Examples of some Pokémon Rumble NFC figures, taken from
http://www.amiibotoys.com/wp-content/uploads/2014/10/pokemonamiibo.jpg

Chapter 2

Near field communication

Near field communication (NFC) is basically a short-range wireless connec-
tion between two nodes used for information transfer. This technology is
further based on the already existing and profound method of Radio Fre-
quency Identification (abbreviated by RFID). Langer and Roland state in
their publication that the first usage of RFID dates all the way back to the
Second World War [24].

2.1 Radio frequency identification (RFID)

Radio frequency identification is a system for the contactless identifica-
tion and data-transfer throughout electromagnetic waves. For this purpose
tags (transponders for emitting messages) and corresponding readers are
required.

In most cases a RFID tag contains an identification number, by which
the RFID reader can identify the read object. Furthermore, tags might also
store read- and/or writable memory within.
Depending on their electric power source, RFID tags can be generally di-
vided into two groups.

Figure 2.1: Scheme of a RFID tag including chip and coil[14]

9

2. Near field communication 10

2.1.1 Active RFID
Active tags have their own power source and hence they can transmit a
stronger signal over a further distance (up to 20 or 100 meter). In exchange
for these features the tag however is bigger and more expensive than their
passive counterparts. For active tags it is either possible to constantly broad-
cast a signal, or to stay dormant until a receiver comes within range. Due
to having their own on-board power source, active tags typically operate at
higher frequencies of about 2.45 - 5.8GHz, depending on the use case and
memory requirements.

2.1.2 Passive RFID
On the other hand passive RFID tags do not possess their own power source,
so these tags are rather cheap in production (according to Weinstein less
than $0.2 per piece[32]) and as a result established as a standard in RFID
implementations. In addition passive tags are rather small, compared to the
active ones. As for the signaling distance, there is a very general rule of
thumb: The larger the tag, the larger the read range. [32]

2.2 Near field communication (NFC)

2.2.1 Evolution of NFC
According to Langer and Roland[24], the NFC technology had been invented
by Sony and NXP Semiconductors (former Philips Semiconductors) back in
2002. Later on in 2004, the NFC Forum was founded by the former and Nokia
with the purpose to uniformly standardize the NFC technology worldwide.
At that time, Nokia had been one of the biggest and well established manu-
facturers for mobile-phones, and therefore, with the implementation within
several of their devices, near field communication started its triumph. Ever
since, many field trials had been launched worldwide in order to exhibit and
test new fields of application. By way of example, Langer and Roland refer
to the field trial in the University of applied Sciences Hagenberg in 2006. For
this, the participants (mostly students and teachers) were, under the usage
of NFC -enabled phones, able to purchase meals in two canteens on the one
hand, and on the other the subscribers could gain access to lecture halls and
laboratories.

Over the long term many applications for NFC in everyday life could be
established. The most common for this are service initiation (NFC tags are
located within ordinary items and by connecting a corresponding reader bits
of information about the given object can easily be obtained), peer-to-peer
connections, mobile NFC payment and, as already listed in the first chapter,
small plastic figurines used for gaming.

2. Near field communication 11

2.2.2 Functional principle

2.2.2.1 Power supply

The near field communication technology is based on radio frequency identi-
fication and hence NFC tags also either possess an active or a passive power
supply.

Figure 2.2: Magnetic field of a current-carrying conductor[24]

Hans Christian Ørsted had proven in 1820 that every current-carrying
conductor produces a magnetic field(figure 2.2). As coils are numerously
curled conductors, the generated magnetic field hence is heavily amplified
within. Contradictorily, in case a particle of charge enters an electromagnetic
field, it will experience a force orthogonal to the direction of the magnetism
and electricity - the so-called Lorentz force. Michael Faraday postulated that
vice versa changes in the magnetic field might affect the electrons to flow
within a conductor, as the raised Lorentz force drives them within a certain
direction. The therefore generated power is known to us as induced current.
One use of the induced current that is essential for passive RFID (and
respectively for passive NFC) are transformers. For this, one coil running on
alternating current is located right next to another coil. Due to the constant
flux alteration, potential is inducted within the second choke. The gained
voltage is direct proportion to the coils’ windings (U1 : U2 = N1 : N2).

The basic structure of a RFID or NFC system using induction is dis-
played in figure 2.3. For the power allocation the reader feeds its antenna
(coil 1) with a sinusoidal current and as a matter of fact the transponder an-
tenna therefore receives inducted electricity. In order to access the received
alternating current as a direct one, a rectifier is then used. As due to slight
changes in the inductive coupling (distance between reader and transpon-
der increases/decreases or the transponder gets repositioned) the received
inducted current, within the transponder, changes enormously. But the tags
and their integrated circuits mostly operate only within a smaller voltage
range (currently from approximately 0.8 to 5 volt). Thus a voltage limiter
is required in order to either amplify or limit the voltage.

2. Near field communication 12

Figure 2.3: Structure of a RFID/NFC system using induction[24]

2.2.2.2 Data transfer

Depending on the power supply (active or passive) there are two kinds of
data transmission for RFID- and NFC -systems. For passive systems, the
tags’ roles (one is the reader and the other one is the transmitter) are fixed
and hence two channels are used. Whereas for active systems, the currently
transmitting device always acts as the reading and writing unit, but the
roles are not predefined whereby these can be switched. In this case, only
one channel is used for the data transfer. But in comparison to RFID, NFC
always operates on the frequency band of 13.56MHz.

The uplink (transfer from reader to the transponder) is equal to the
direction of the power supply. Therefore, it seems obvious to modulate the
carrier signal which is used for supplying the energy with the data stream.
Most commonly amplitude-shift-keying and phase-shift-keying are used for
this.

Then again the downlink is the transponder’s response passed on to
the reader generated by load modulation. Changes in the transponder’s
impedance result in a different amplitude or even phase of the potential
at the receiving antenna which will then get demodulated as the responded
signal. In order to simplify, one could assume that the receiving tag al-
ters the magnetic field generated by the reader, as it uses up energy. As a
matter of fact less power is retransmitted and, due to this deviation, the
reader is hence capable of reconstructing the received data. In RFID- and
NFC -systems there are two possible types of load modulation. For one thing
ohmic load modulation, whereas for another thing capacitive load modula-
tion exists. The former causes merely ASK (amplitude-shift-keying) for the
receiving antenna’s voltage, as an additional modulation resistor is wired
parallel to the transponder’s own transistor. The latter in comparison how-
ever induces ASK as well as PSK (phase-shift-keying) on the retransmitting
potential, as an additional modulation capacitor is wired parallel to the
transponder’s own condenser.

2. Near field communication 13

2.2.2.3 Anti-collision

As simultaneously more than one tag can be in the RFID/NFC -reader’s
range, and furthermore all of them even transmit on the same frequency
band, the sent data streams interfere and are hence damaged by collisions.
To avoid this behavior multiplexing is applied. Due to the fact that only one
frequency band is utilized, FDMA (frequency-division multiple access) can-
not be used. CDMA (code-division multiple access) is not suitable either, as
the upcoming streams are transmitted at staggered intervals, due to the var-
ious distances between tag and reader. Consequently, TDMA (time-division
multiplexing) and SDMA (space-division multiplexing) are commonly avail-
able for RFID- and NFC -systems. In addition to these procedures, several
anti-collision methods can be used for increased reliability.

• Collision avoidance
One of the easiest, but not less target-aimed, models for this purpose
is the concept of collision avoidance. For this, every communication
node checks beforehand if no other communication has yet been es-
tablished. Taking the example of a NFC -based system, a node only
activates its own carrier signal once no other radio frequency field has
been detected over a certain, but randomly chosen, timespan.

• Binary search
On the other hand, NFC -systems can benefit from using a binary
search algorithm to detect every transponder within reach. As every
tag has its own identification, the reader first gathers every one of
these. In case the reader receives multiple IDs a collision is detected.
Therefore, the reader starts a recursion in order to ask for the first half
of the obtained identifiers. This is performed several times while the
reader receives more than one ID at a time. Assuming that only one
value is returned however, the reader can now access the correspond-
ing transponder throughout the newly received identifier. Whereas if
nothing is returned, the reader will start another recursion for the sec-
ond half of the ID-array. Throughout the entire search process all tags
will get enumerated.

• Slotted ALOHA
At first sight the ALOHA protocol seems to be the complete opposite of
collision avoidance. Whenever a communication node has data to send,
the information will be transmitted at a randomly chosen point. Taking
the case that by hazard more than one node simultaneously broadcast
their data, a collision is detected. In this scenario every communication
participant will be requested to try to resend the collided data packages

2. Near field communication 14

after a short, but yet once again, randomly chosen timespan.
As it is most likely that the repeated data streams will interfere again
after the aforesaid intermission, discrete timeslots were introduced in
the improved slotted ALOHA protocol. For this, the receiver forwards
further details about the duration of the pausing process (in multi-
ples of timeslots) as an extra parameter to the communication nodes,
alongside the query for resending collided data. Therefore, with the
usage of timeslots, the collisions are overall reduced and hence as a
result the maximum throughput is increased significantly.

2.2.2.4 Signaling technologies

For NFC devices three signaling technologies exist, in order to ensure that
various types of near field communication can communicate with each other.
Whenever a tag comes within a reader’s range, they first communicate about
the used technology and transmit data based on the specified protocols[1].

• NFC-A (ISO/IEC 14443 Type A)
As the name already implies, NFC-A only corresponds with the com-
patible RFID Type A communication. In Type A communication delay
encoding (Miller encoding) is used. For this set-up a sent signal needs
to change from 0 to 100 percent, in order for the device to register
the difference between sending a 12 or a 02 bit. Data rates of approx-
imately 106Kb/s can be achieved by using this signaling technology[1].

• NFC-B (ISO/IEC 14443 Type B)
Similar to NFC-A, NFC-B solely corresponds with RFID Type B com-
munication. However, a Type B communication uses Manchester en-
coding, instead of Miller encoding utilized by the NFC-A counterpart.
By any definition, the amplitude modulation is at 10 percent, resulting
in a falling edge (from 100% to 90%) being represented by a logic 12,
whereas a rising edge (from 90% to 100%) is resembled by a logic 02[1].

• NFC-F (JIS X 6319-4 - FeliCa)
In strong comparison to the other two signaling technologies, this one
however is normalized by the Japanese Industrial Standards Commit-
tee. NFC-F further refers to a faster form of RFID transmission (data
rates with up to 212Kb/s) known as FeliCa[24].

2. Near field communication 15

2.2.2.5 Communication modes

For NFC -devices it is possible to operate within three standardized commu-
nication schemes: Peer-to-Peer, Reader/Writer Mode & Card Emulation[2].

• Peer-to-Peer Mode
Two NFC enabled devices can communicate with each other, in order
to exchange information or to share files, while they both operate in
Peer-to-Peer Mode. For this, at least one partner uses active NFC and
both make use of the Logical Link Control Protocol (LLCP); a proto-
col that supports the bi-directional communication.

• Reader/Writer Mode
The Reader/Writer Mode enables the communication between an ac-
tive NFC -device and a passive tag, whereas data can be read from
or written to the tag. In order to grant a successful transmission, the
used data format needs to come up to the standard of the NFC Data
Exchange Format, as it will be described later on(see 2.2.3).

• Card Emulation Mode
In the Card Emulation Mode a NFC enabled device can act as, and
therefore tries to emulate, a NFC tag. Instead of the bi-directional
communication used in Peer-to-Peer Mode, a direct one (only the
reader gets bits of information stored on the virtual NFC tag) is es-
tablished, as the emulated tag uses passive NFC.

Figure 2.4: NFC -communication modes[14]

2. Near field communication 16

2.2.3 NFC Data Exchange Format (NDEF)

The NFC Data Exchange Format specification defines the format, as well as
the rules, of the required data structure that is used in order to exchange bits
of information between two NFC enabled devices or a NFC -reader and the
corresponding tag. Therefore, NDEF is a simple binary data-format con-
taining application-specific data. The application-specific data, as well as
meta information (information about the possible interpretation, the struc-
ture of one NDEF Record, etc.) are packed into so-called NDEF Records.
Then again several NDEF Records might be grouped as a NDEF Message.
As an example take the case of two NFC -devices sharing contact informa-
tion with each other. The entire contact is therefore submitted as one NDEF
Message containing several NDEF Records (the contact’s name/phone num-
ber/etc.). Hence based upon different underlying transfer protocols (e.g.
Logical Link Control Protocol (LLCP)) a unified format for the data trans-
mission is granted[24].

Figure 2.5: NDEF Message structure[5]

2.2.3.1 NDEF Record

As already mentioned before, a NDEF Record consists out of meta infor-
mation, as well as the actual application-specific data. Respectively the
NDEF Record is subdivided into a header (the meta information) and a
payload (the data). Moreover the header has Boolean flags, length specifi-
cations of certain fields (Type Length, Payload Length & ID Length),
information about the used data type (TNF (type name format) & Pay-
load Type) and optionally a unique identifier for the data packet stored
within (Payload ID). The flags in questions are further categorized as: MB

2. Near field communication 17

(Message Begin), ME (Message End), CF (Chunk Flag), SR (Short
Record) and IL (ID Length Present). MB and ME typically mark the
first and last NDEF Record within the entire NDEF Message, whereas CF
indicates whether this entry is complete or separated and continued within
(at least) the following NDEF Record. SR on the other hand signalizes a
shorter NDEF Record, as the payload’s length is reduced from 32 bits (flag
set to 02) to 8 bits (flag set to 12). Finally the value of the IL flag resembles
the state of the NDEF Record’s identification information. In case this flag
is not set to true, the record does neither contain the ID Length nor the
ID field. Otherwise an ID Length value is set which moreover defines the
bit length of the ID Field per se.

2.2.3.2 NDEF Message

A NDEF Message contains at least one NDEF Record, but in most cases
several entries are grouped within. Throughout bits in the single NDEF
Records’ headers the beginning and the end of the messages are marked
(with flags for Message Begin & Message End).

2.2.3.3 NFC Record Type Definition (RTD)

With NDEF Messages and the underlying protocols all different kinds of
data formats can be transmitted. However, no bits of information about
how the NFC enabled device should interpret and handle the newly re-
ceived data are given. Therefore, the NFC Record Type Definition clearly
defines basic structures and guidelines for the further proceeding and repre-
sentation of the data on the NFC device. For this, RTD has on the one hand
a basic specification, mostly in order to handle essential parameters, such as
naming conventions, the proceeding of defective or unknown RTDs, as well
as rules for the conjunction of several NDEF Records and NDEF Messages.
On the other hand RTD has further specifications regarding the different
record types as these are already declared in the NDEF Records’ TNFs and
Payload Type fields. On the basis of the TNF exactly two types of NDEF
Records can be defined and thus are marked by Uniform Resource Names
(URN)[24]:

• NFC Forum Well-known Types
NFC Forum Well-known Types are reserved by the NFC Forum and fit
the scheme urn:nfc:wkt:<Name>. In order to keep the used memory
consumption low, solely the URN <Name> is saved within the NDEF
Record’s type field. Basically there is a separation between global
and local types. The global types are declared and predefined by the
NFC Forum and hence must not hardly differ from the pristine RTD-
definition, whereas the local types can be freely defined within the

2. Near field communication 18

context of one actual field of application. The most common examples
for NFC Forum Well-known Types are: Text Record types (wkt : T),
URI Record types (wkt : U), Smart Poster Record types (wkt : Sp),
Generic Control Record types (wkt : Gc) & Signature Record types
(wkt : Sig).

• NFC Forum External Types
By contrast NFC Forum External Types must not fit the specifica-
tions through the NFC Forum at all, whereas organizations can define
their own arbitrary record types. In order to distinguish between Well-
known Types and External Types, urn:nfc:ext:<Domain>:<Name> is
used as the URN pattern for the latter ones. Like for the NFC Fo-
rum Well-known counterparts, only the URN <Domain>:<Name> is
saved within the NDEF Record.

Chapter 3

Reverse engineering Amiibo

For the University of Applied Sciences Hagenberg, especially for the bachelor
degree course Mobile Computing, it is most common to submit a software
project alongside the bachelor thesis. At first an Android library for the
basic Amiibo integration, as well as an Android application for the emula-
tion of Amiibos, had been targeted. But several difficulties arose within the
development phase, whereas the scope of the software project was changed
to the Android library in question and an Android application in order to
backup Amiibo data.

Hence within the following chapter Amiibos and their functionality, the
research results of analyzing Amiibos, the development phase and the dif-
ficulties within and last, but not least, the software project per se will be
described in more detail.

3.1 NFC tag

The International Organization for Standardization (ISO), as well as the
NFC Forum, defined a broad variety of technical specifications that should
be met by all NFC -systems (readers and tags). Therefore, within the near
field communication technology four different types of tags (NFC Forum
Type 1-4 tags) exist. As for this, the RFID tag used for Amiibos is catego-
rized as a NFC Forum Type 2 tag.

3.1.1 NFC Type 2 tags

NFC Type 2 tags are tags based on the NFC-A technology and further-
more are heavily oriented towards MIFARE Ultralight tags manufactured
by the company NXP Semiconductors. Hence they are merely used for sav-
ing data[24]. Several Type 2 tags can operate simultaneously within a single
reader’s range rather unproblematically, as anti-collision methods are used
for this.

19

3. Reverse engineering Amiibo 20

Depending on the tag’s memory size there are two different structures.
On the one hand for a memory size equal to 64 bytes a static EEPROM
(Electrically Erasable Programmable Read-Only Memory) structure and on
the other hand a dynamic counterpart for bigger memory sizes is used. As
for the data structure per se, the entire memory is divided into several
blocks/pages, each containing exactly four bytes of data.

Static memory: As the memory size of tags, using static memory orga-
nization, is limited to 64 bytes only few access permissions need to be set.

Figure 3.1: Static memory organization of Type 2 tags[26]

Therefore, exactly two bytes (the static lock bytes at page 2) are re-
quired to prevent further writing access. In order for this to work, every bit
resembles an entire page and hence a logical 12 indicates a locked read-only
content, whereas a logical 02 grants writing permission to the corresponding
block address. The consecutive numbering from the second lock byte’s most
significant bit to the least significant bit and from the first lock byte’s MSB
to its fifth bit hereby individually represents the pages 15 to 3 in ascending
order (see figure 3.2). The last three bits of static lock byte 1 furthermore
enable whether some block groups can change their values or not.

Figure 3.2: Static lock bytes 0 and 1[28]

3. Reverse engineering Amiibo 21

Dynamic memory: NFC tags utilizing the dynamic memory organiza-
tion mostly possess a memory size slightly bigger compared to their static
counterparts. Hence further lock bytes are commonly used in order to prop-
erly cover the access states of the additional memory.

Figure 3.3: Dynamic memory organization of Type 2 tags[26]

The dynamic lock bytes basically follow the same rules as the static
lock bytes, but with the sole difference that for byte 1 and byte 2 every bit
retrospectively represents an entire page group in this case. The third byte
however will indicate bitwise, whether it is allowed to change the values of
entire locked byte groups or not.

Figure 3.4: Dynamic lock bytes structure for the example of the Amiibo’s
NTAG215 [28]

3. Reverse engineering Amiibo 22

3.1.1.1 Capability Container (CC)

Despite the wide variety of NFC tags that currently exists, every system just
needs to support a small subset. In order to accurately classify a handful
of supported tags the Capability Container (CC) is used. Taking the exam-
ple of Type 2 tags, the CC is saved within the four bytes of block 3 and
needs to follow certain rules. For this, the first byte is declared as the NDEF
Magic Number and is always set to a constant value of 0xE1. According to
Paret et al. the NDEF Magic Number indicates that the NFC tag is a NFC
Forum tag containing at least one NDEF Message stored within[30]. The
second byte in turn gives further indication of the version of the used tag by
means of the uniform NFC Forum-specification (the value XY matches the
version number X.Y.). With the third byte the size of the useable data mem-
ory is defined as eight times the byte’s value. Byte number 4 on the other
hand gives further bits of information about the access states of the static
memory. The most significant nibble (first four bits) therefore describes the
reading permission and the only possible value for this is 0x0, resulting in no
restrictions. Whereas the least significant nibble (last four bits) represents
the writing permission (e.g. 0xF asserts no writing permission at all). As
mostly the field of application defines this value, it must not always match
the actual state of the lock-bits.

3.1.1.2 TLV structure

Tag-Length-Value, or short TLV, are data structures representing all kinds
of information and/or configuration parameter. For this, a TLV -pattern
consists out of three basic fields (Tag-, Length- and Value-field), as it can
be seen in figure 3.5 below.

Figure 3.5: Basic TLV structure[24]

The Tag-field contains a single byte, representing the type of the entire
TLV block. The tag values from 0x04 to 0xFC and 0xFF however are not
possible in this context, as they are reserved for future use by the NFC
Forum[26]. In strong comparison to the first field, the latter two must not
always be present. Taking the case that the L-field however is available, it
has one or three bytes stored within, either way in order to declare the actual
length of the subsequent V-field. As a result, the V-field has a range from 0
to 254 (L-field is represented by one byte; excluding 0xFF) or from 255 to

3. Reverse engineering Amiibo 23

65534 (L-field is represented by three bytes; whereas the first one is set to
0xFF and the latter two define the actual length value) bytes, in order to
store the current data within these.

• NULL TLV
As the name already implies this TLV -structure is empty, resulting
in an absence of the Length- and Value-field and in the Tag-value be-
ing 0x00. The purpose of NULL TLV s is to mainly add a padding in
between of memory areas or other TLV -structures. NULL TLV s and
the Terminator TLV are furthermore the only TLV blocks within the
entire Type 2 tag that only consist out of one byte.

• Lock Control TLV
TLV structures with a Tag-value of 0x01 are declared as Lock Control
TLV s. Additionally the Length-field inevitably has 0x03 as its pre-
defined value, resulting in the V-field having a length of three bytes.
These three bytes furthermore indicate the position and the size of the
locked bits, as well as the length of the locked area. Within the first
byte of the V-field, the starting point (= byte address) of the locked
bits is stored and can be calculated by the following formula:

Byte Address = (MSB Nibble) ∗ 2(bytes per page) + (LSB Nibble)

The middle byte gives further information about the amount of locked
bits and the length of the locked area is given by the V-field’s least
significant byte.

• Memory Control TLV
As the Lock Control TLV is used for the tag’s locked data, the Memory
Control TLV, as the former’s counterpart, clearly defines the tag’s re-
served memory. For this, these structures strongly resemble each other,
with the sole difference that the Tag-field has a constant value of 0x02.
All Lock Control TLV s and Memory Control TLV s need to be saved
within the NFC tag before any NDEF Message TLV or Proprietary
TLV.

• NDEF Message TLV
This TLV -structure has a Tag-value of 0x03 and has, rather than the
former mentioned pendants, a Length-field without a predefined value.
For this, the Value-field contains L bits of information in the NFC Data
Exchange Format (NDEF). At least one NDEF Message TLV needs
to be stored within an entire Type 1 NFC tag, but however does not
necessarily need to be available within Type 2 NFC tags at all.

3. Reverse engineering Amiibo 24

• Proprietary TLV
Proprietary TLV s always begin with a Tag-value of 0xFD and, as by
definition, store proprietary data within the Value-field.

• Terminator TLV
If present, the last TLV within the NFC tag will be the so-called
Terminator TLV. This structure has neither a Length- nor a Value-
field and hence only consists of a single 0xFE byte as Tag-field. Its
sole purpose is to mark the end of all TLV -structures in the memory.

3.1.1.3 Commands

As the main purpose of NFC Type 2 tags is to store data within, only three
basic commands are needed to cover all use cases: READ (0x30), WRITE
(0xA2) & SECTOR_SELECT (0x9370/0x9570). The READ-command al-
ways returns 16 bytes at once, whereas with the WRITE-command only
four bytes per iteration can be saved back to the tag. Writing- and reading-
permissions are limited to a maximum memory size of one kilobyte. As a
result, the third command, namely SECTOR_SELECT, is used in order to
access another - also one kilobyte sized - sector.

The ISO/IEC 14443 standard declares further commands in order to
establish or pause a connection. In addition to the existing commands, it is
up to the manufacturer to establish new ones. Therefore, taking the example
of the NFC tag used for Amiibos, the following additional commands are
available:

Command Value Description

GET_VERSION 0x60 With this command the version information for the
specific tag type is received (ref 3.1.2).

FAST_READ 0x3A By providing additional start and end page ad-
dresses, the scope within is returned at once.

COMP_WRITE 0xA0 The COMPATIBILITY_WRITE command is im-
plemented to guarantee interoperability with other
infrastructures[28].

READ_CNT 0x39 The NFC tag’s counter value is returned by apply-
ing this command (ref 3.1.2).

PWD_AUTH 0x1B By providing the valid password as a parameter,
the password protected NFC tag’s memory can get
accessed to. The password authentication acknowl-
edge is the actual return value (ref 3.2).

READ_SIG 0x3C With this command the tag’s specific 32-byte sig-
nature is returned (ref 3.2.1.3).

Table 3.1: Table showing the Amiibo’s NFC tag’s specific commands

3. Reverse engineering Amiibo 25

3.1.2 Amiibo Data Page Table

As already mentioned beforehand, the NFC tag stored within Amiibos is
based on the NFC Forum Type 2 standard and furthermore, in more de-
tail, is a product named NTAG215 by the manufacturer NXP Semicon-
ductors. Despite the many standards defined for NFC Forum Type 2 tags,
the NTAG215 within Amiibos does not necessarily fit all of these schemes.
Therefore, a detailed table plus description, based upon the own findings of
analyzing many Amiibo data (for reference see A.3), is listed below.

Access Page Byte 1 Byte 2 Byte 3 Byte 4

Locked 0 UID UID UID Check byte
Locked 1 UID UID UID UID
Locked 2 Check byte Reserved for internal usage 2 static lock bytes
Locked 3 One time programmable area

Unlocked 4 NFC counter Reserved for internal usage
Unlocked 5 - 12 Saved Amiibo data
Locked 13 - 31 Tag specific locked data

Unlocked 32 - 129 Saved Amiibo data
Locked 130 3 dynamic lock bytes Reserved for future usage
Locked 131 - 132 Configuration

Not readable 133 32 bit password
Not readable 134 2 bytes password verification (PACK) Reserved for future usage

Table 3.2: Data page table of Amiibo NFC tags

The Amiibos’ embedded NFC tag has a total capacity of 540 bytes, or-
ganized in 135 pages with each containing four bytes. In order to clearly dis-
tinct the tag within an electromagnetic field, an unique identifier (UID)
of seven byte length is saved in the first three bytes of page 0 and in the
entire page 1. In accordance to ISO/IEC 14443-3 the first byte of the UID
always holds the predefined manufacturer identifier[28]. Therefore, as for
the example of NXP Semiconductors, all Amiibos’ serial numbers start with
0x04. Additionally two check bytes are located at the last byte of page
address 0 and at the first byte of page 2 in order to check the correctness of
the read UID. For this, the first check byte is calculated by the Boolean
XOR operation of CT UID1 UID2 UID3, whereas check byte number
two is defined by UID4 UID5 UID6 UID7. In this context CT stands
for a cascade tag with a constant value of 0x88, indicating that the UID
is not yet completed. The second byte of page 2 possesses a constant value
of 0x48 and is reserved for internal usage according to the public NTAG215
data sheet. Due to being pre-programmed and write protected while in pro-
duction, the first three page addresses are constantly locked as a matter of
fact.

The one time programmable area located at page 3 however does
not fit the usual Type 2 tags’ Capability Container standard. Instead of the

3. Reverse engineering Amiibo 26

typical NDEF Magic Number of 0xE1, a constant value of 0xF1 is defined
for all Amiibos. As Nintendo was not capable of delivering a large amount of
certain Amiibo figures at a given point, some figurines have been reworked
over the time for another release. The second byte on page address 3 there-
fore gives further indication about the Amiibos’ internal version numbers.
Figures that have not been edited and re-released so far feature a version
number of 1.0. represented by a hexadecimal value of 0x10, whereas restored
products hereby possess a higher value.

The 2 static lock bytes are set to a constant value of 0x0FE0 in hex-
adecimal and 0000 1111 1110 00002 in binary. As a result and according to
the configuration defined for NFC Type 2 tags, the Capability Container at
page address 3 and the pages 13 to 15 are locked and their access states can-
not be changed retrospectively. Moreover the 3 dynamic lock bytes pos-
sess an unchangeable hex value of 0x01000F (0000 0001 0000 0000 0000 11112
in binary) and will therefore lock - as described in 3.1.1 - the pages ranged
from address 16 to 31.

As the NDEF Magic Number of the Capability Container already lead to
the assumption that no NDEF Message is stored within the entire NFC tag,
this speculation is further proven to be true by analyzing the actual propri-
etary saved Amiibo data. The pages 5 to 12 and 32 to 129 nevertheless
do not contain any other TLV -structure either. Page addresses ranged from
13 to 31 on the other hand are locked and possess tag specific data that
is overall different for all Amiibos; even for the same character model these
values strongly differ. However, most striking for this section is that the
blocks 21 and 22 define the video game character, the game series and the
Amiibo series represented by the Amiibo per se (for reference see table 3.3).

Page Nibble 1 Nibble 2 Nibble 3 Nibble 4 Nibble 5 Nibble 6 Nibble 7 Nibble 8

21 Game series Character index Character variation Amiibo type
22 Internal index for enumerating all Amiibo models Amiibo series

Table 3.3: Structure of page 21 & 22 indicating the represented Amiibo
series, video game character and the corresponding game series

Page 21’s first 12 bits define a certain video game series and the following
nibble indicates a video game character taken from the former (see table
3.4). In most cases these 4 bits are clearly sufficient in order to precisely
index a video gaming character within the corresponding series. But however
this does not apply for Nintendos Pokémon franchise at all. At the time
of writing a total amount of 721 so-called pocket monsters exists, whereas
the 2 aforesaid bytes need to get looked at in their entirety. For this, the
Pokémon are classified by their internal consecutive numbering starting with
0x1901 for monster number #001: Bulbasaur and ranging to 0x1BD1 for
the last entry of Pokémon #721. As Nintendo exhibits a broad variety of
characters, some of them bear a strong resemblance to each other or are even

3. Reverse engineering Amiibo 27

duplicates. Therefore, character analogies like Link and Toon Link (from the
The Legend of Zelda-series) or Super Mario and Dr. Mario (from the Super
Mario Bros.-series) are represented by the same four bits for the character
model, but can rather be differentiated by the third byte of page address
21. The least significant byte of this page identifies the kind of the Amiibo.
Therefore, Amiibos based upon plastic figurines possess a constant value of
0x00, Amiibo cards hereby state 0x01 and the yarn Amiibos of the Yoshi’s
Woolly World Collection are declared by 0x02.

Game Series Nibble 1 Nibble 2 Nibble 3
Animal Crossing Series 0x0 0x1 0x8

Chibi-Robo Series∗ TBA TBA TBA
Donkey Kong Series 0x0 0x0 0x0
Duck Hunt Series 0x0 0x7 0x8

F-Zero Series 0x0 0x6 0x0
Fire Emblem Series 0x2 0x1 0x0

Game & Watch Series 0x0 0x7 0x8
Kid Icarus Series 0x0 0x7 0x4

Kirby Series 0x1 0xF 0x0
Mega Man Series 0x3 0x4 0x8

Metroid Series 0x0 0x5 0xC
Mother/Earthbound Series 0x2 0x2 0x8

Nintendo Mii Series 0x0 0x7 0xC
Pac-Man Series 0x3 0x3 0x4
Pikmin Series 0x0 0x6 0x4

Pokémon Series∗∗ 0x1 0x9 0x0
0x1+ 0xB+ 0xD+

Punch-Out!! Series 0x0 0x6 0xC
R.O.B. Series 0x0 0x7 0x8

Shovel Knight Series∗ TBA TBA TBA
Sonic the Hedgehog Series 0x3 0x2 0x0

Splatoon Series 0x0 0x8 0x0
Star Fox Series 0x0 0x5 0x8

Street Fighter Series∗ TBA TBA TBA
Super Mario Bros. Series 0x0 0x0 0x0

The Legend of Zelda Series 0x0 0x1 0x0
Wario Series 0x0 0x0 0x0

Wii-Fit Series 0x0 0x7 0x0
Xenoblade Chronicles Series 0x2 0x2 0x4

Yoshi Series 0x0 0x0 0x0
∗ No Amiibo of this game series has yet been published.

∗∗ Currently indexed from 0x1901 (Pokémon #001) to 0x1BD1 (#721)

Table 3.4: Table showing the different values of the game series of the
corresponding Amiibo character

3. Reverse engineering Amiibo 28

As the number of released Amiibo figurines is constantly growing, Nin-
tendo therefore keeps track of them by allocating a steadily incrementing
index to each model. This number can hence be extracted from the first two
bytes of page 22. The next two bytes then are reserved for the Amiibo series
(for reference of all values see table 3.5 below).

Amiibo Series Byte 1 Byte 2

Super Smash Bros. Collection 0x00 0x02
Super Mario Bros. Collection 0x01 0x02

Yoshi’s Woolly World Collection 0x03 0x02
Splatoon Collection 0x04 0x02

Animal Crossing Collection 0x05 0x02
Chibi-Robo Collection∗ TBA TBA

Super Mario 30th Anniversary Collection∗ TBA TBA
Skylander-Crossover Collection∗ TBA TBA

∗ These Amiibo collections are not yet published.

Table 3.5: Table showing the different values of the Amiibo series

The tags’ predefined configurations are stored at the page addresses
131 and 132. NXP Semiconductors introduced the new feature of UID/NFC
Counter ASCII mirroring with their latest product line of NTAG21x, which
the Amiibos’ tags are based upon. This feature would allow saving the UID
and/or a counter value (for the amount of successful writing accesses) into
the NFC tag’s memory in ASCII code, basically in order to allow an easier
usage within NDEF Messages. Since the NFC tag stored within Amiibos
however does not hold any NDEF Messages, the aforementioned feature is
naturally disabled. This can be further confirmed by looking at the first
nibble of page 131’s first byte and at byte number 3 of the implied block.
Typically the first two bits indicate whether this feature is enabled (012−112)
or not (002) and the following two bits, in combination with byte 3, clearly
define the byte and page position for the beginning of the ASCII mirroring.
Therefore, with a constant value of 0x000000, the mirroring feature is proven
to be disabled. As only the first byte of page 132 is used (all other bytes are
yet reserved for future usage), this value is thus set to an invariable value of
0x5F (010111112 in binary) for all Amiibos. Due to the second bit being 12,
the entire configuration pages are permanently locked against write access.
With the forth bit possessing also a value of 12, the NFC counter feature
is therefore enabled. Every time the NFC tag’s memory is written to, the 24
bit counter value, which is stored within the first three bytes of page address
4, is automatically increased by one. As no defaults exist, all Amiibos hereby
initially start fresh out of the box with a predefined value of 0xA50000. In
case the stored data will be reset, a random number between 0x1000 and

3. Reverse engineering Amiibo 29

0xFFFF is added to the NFC counter s value. Once the maximum value
of 0xFFFFFF was reached, this value would not be able to change any
longer.

3.2 Password

In additional reference to the Amiibo data page table (as described above in
chapter 3.1.2), data pages which are declared as locked cannot get overrid-
den, whereas unlocked ones can easily be changed. In order to avoid unau-
thorized memory alterations though, the NTAG215 can be secured with a
32 bit password stored at page address 133. The last byte of page 131
therefore defines a page address as the starting point from which the pass-
word verification is required as an ongoing/continuing fashion. If the page
address however is set to an index higher than the actual tag’s length, the
password protection will be disabled after all. Not only the writing access
can be protected by the password, but rather can the NFC tag become
prohibited from being read without a valid authorization too. As Amiibos
however have a predefined bit of 02 as the most significant bit of page 132’s
first byte, the password is solely needed to gain writing permission. Mostly
in order to prevent brute-force, the NFC tag also possesses a limitation for
negative password verification attempts stored at the last three bits of afore-
said byte. Converted from the binary value of 1112 (page 132’s first byte is
constantly 0x5F), the tag’s memory can be tried to get accessed by exactly
seven times before the tag will inevitably get locked permanently. Once the
authorization succeeds however, this counter will immediately become reset.
Neither the password nor the dedicated 2 byte password authentication
acknowledge (PACK) can be read directly from the NFC tag. Therefore,
instead of transmitting the real value, a dummy entry of 0x00 is replied as
a return value for every requested read command of the related pages.

Based upon the latest cryptographic standards and in order to increase
the overall system security, elliptic curves are used for the Amiibos’ pass-
words and signatures.

3.2.1 Elliptic curve cryptography
With the fast evolving advances in technology and the vastly growing data
rates as a direct consequence, cryptography systems need to adapt to this
situation as well. Hence the history of cryptography can be categorized into
two eras: the classic and the modern era. Therefore, cryptological techniques
evolved from security schemes that are based upon letters (e.g. the Caesar
cipher where every letter in the alphabet is switched with a different one) to
the actual forms of number-based systems. Besides the well-known examples
of the RSA algorithm or the Di e-Hellman key exchange algorithm, elliptic
curve cryptography is a more modern and more powerful approach.

3. Reverse engineering Amiibo 30

3.2.1.1 Definition of elliptic curves

A polynomial is by mathematical means mostly an expression with vari-
ables and coefficients. Two basic examples hereof are x2 + y2 = r2 (which,
plotted over R, results in a circle) and one of its numerous variations with
coefficients a ∗ x2 + b ∗ y2 = c2 (depicted as an ellipse). By the means of
these illustrations other types of graphs (due to their shapes later on mostly
referred to as curves) can be formed.

Figure 3.6: Elliptic curve ex-
ample of the equation y2 =
x3 − 3x + 3 (over R)[29]

Hence according to the definition
taken from Paar et Pelzl[29], an ellip-
tic curve is a special type of polyno-
mial equation for which the set of all
pairs (x, y) ∈ Z fulfill

y2 ≡ x3 + a ∗ x + b where a, b ∈ Z

and the condition 4 ∗ a3 + 27 ∗ b2 �= 0.
The latter formula will cause the el-
liptic curve to be non-singular, mean-
ing that geometrically the graph has
no self-intersections or isolated points,
and that in every point a tangent
would be clearly distinct. Whatsoever
elliptic curves are no ellipses after all,
but they received their name due to
their usage for determining the cir-
cumference of the latter.

Most noticeable for the plotted elliptic curve is that the outcome is
symmetric with respect to the x-axis. This is a direct result from the fact
that for every value of xi on the elliptic curve a total amount of two solutions
exists: ±

√
x3

i + a ∗ xi + b . Furthermore, due to the elliptic curve being non-
singular and based on a cubic function (as the equation contains x3), there
is only one intersection of the graph with the x-axis. By solving the function
for y = 0, one solution in R (this is directly depicted as the intersection with
the x-axis) and further two complex solutions are found. As the coordinate
system however is based upon R

2, the latter two are logically not showing
up in the plot.

3. Reverse engineering Amiibo 31

3.2.1.2 Computing with elliptic curves

As the elliptic curve cryptography is an important part of the modern era,
it is also founded on the idea of a two keys cryptosystem (public key cryp-
tographic system). The first one, referred to as a public key, is solely used
to encrypt the data and as a result, it may as well be known to anyone.
While the latter private key in turn is required to decrypt the data again,
it shall be kept secret at any price. In order for a public key cryptographic
system to work long-term (it shall be secure for as long as possible), a set
of algorithms, which are easy to process in one direction but by comparison
are rather difficult to undo, needs to be found. Algorithms featuring the
aforesaid characteristic are most commonly known as trapdoor functions.
Therefore, finding a good trapdoor function is the quintessence of a secure
public key cryptographic system, whereas it is hence considered to be more
secure the bigger the spread between the difficulty in going one direction in
the trapdoor function and undoing it will be.

Taking the example of elliptic curve cryptography, the underlying trap-
door function has a geometric interpretation too: the addition of two points
P = (x1|y1) and Q = (x2|y2) on the curve. For this, a line is drawn directly
through both P and Q and, as a result, a point as the third intersection of
the line with the curve is obtained. Once this point is mirrored along the
x-axis, R = [(x1 + x2)|(y1 + y2)] is obtained by the definition of the method
of Point Addition (for reference see figure 3.7 below). In case P is how-
ever equal to Q, a tangent line instead of a secant is drawn through the
point. Then again the freshly obtained intersection with the elliptic curve
is mirrored alongside the x-axis in order to receive the result R = 2 ∗ P of
Point Doubling P (refer to figure 3.7 once again).

Figure 3.7: Point Addition (left) and Point Doubling (right) for elliptic
curves[29]

3. Reverse engineering Amiibo 32

In a cryptosystem these geometric constructions cannot be performed
however, whereas this needs to be replaced by analytic expressions and for-
mulas. According to the equation of an elliptic curve, the y-value is always
inversely proportional to the x-value. As a result, the y-value can easily grow
towards ± . Computers however often have some difficulties with process-
ing these arbitrary large numbers. Therefore, in order to ensure that the
numbers dealt with are not getting too big, a maximum number is chosen.
Once if any calculation results in a number equal to or larger than the pre-
defined maximum, it will get cropped to fit the valid range (this is achieved
by computing the result modulo the maximum value). For this, the maxi-
mum is mostly picked to be a prime number p, as the elliptic curve (in this
case called a prime curve) therefore will receive better cryptographic proper-
ties[6]. As the equation of the elliptic curve is hence also limited to a certain
field instead of R2, the following analytical expressions for the methods of
point addition and point doubling can be yield:

Elliptic Curve Point Addition and Point Doubling[29]

x3 = s2 − x1 − x2 mod p
y3 = s ∗ (x1 − x3) − y1 mod p

where

s =

{
y2−y1
x2−x1

mod p if P �= Q (point addition)
3∗x2

1+a
2∗y1

mod p if P = Q (point doubling)

The variable s in this context stands for the slope of the secant through
P and Q for point addition, or the slope of the tangent of P in the case
of point doubling.

As another direct consequence to this limitation, the elliptic curve re-
ceives an order q. Due to the fact that for each point addition/doubling
result the x- and y-coordinates will conclusively be computed with a mod-
ulo p operation, the later outcome might be identical to an already formerly
obtained value. For example, this means that if a point P on the curve had
already been point doubled several times (e.g. 35P) and the calculation has
yet to be computed once again (35P + P), the result might be of the same
value as the original point. In case this assumption asserts true, the amount
of operations needed to accomplish this behavior (in this example: 36) is
considered to be the order q of an elliptic curve.

3. Reverse engineering Amiibo 33

3.2.1.2.1 Key Exchange
For the private and public keys of an elliptic curve cryptosystem, one of
the aforesaid curve equations (one that is limited by a predefined maximum
value) is required, as well as a randomly chosen public point Prandom on
the curve. Yet another randomly chosen number priv, one that however
is smaller than the actual order of the used elliptic curve, marks the first
private key. Moreover the second private key is declared as another point
Pprivate that is part of the curve. With a total amount of two private keys,
two public keys can be generated as well. For this, the first one is the point
Ppublic1 generated by a continuous point doubling of point adding Prandom

and Pprivate for exactly priv-times (Ppublic1 = priv ∗ (Prandom + Pprivate)). In
turn the second public key is the direct result of priv-times point doubling
Pprivate (Ppublic2 = priv ∗ Pprivate).

The result of point doubling any of the two public keys priv-times can be
used to derive a session key Psession. As Psession is part of the curve too, the
x- and y-coordinates can be computed with the equation at anytime in case
one of them is known. Thus in particular only one of these two coordinates
(mostly the x-value) should be used for the derivation.

3.2.1.2.2 Message Encryption
For encrypting a message using an elliptic curve, every point that only con-
sists out of whole number coordinates represents a specific character. (Such
a curve is depicted below as figure 3.8.) By enumerating every point plus
the mirrored counterparts, a character code table can be formed.

Figure 3.8: Plot of an elliptic curve that is wrapped around the maximum
and where only whole number coordinates are displayed as points[6]

3. Reverse engineering Amiibo 34

Every character within the encryption message is then mapped to the
corresponding entry defined in the obtained table. Then again for encrypt-
ing each of these points Pmessage to a pair of cipher points E1 and E2, a
further random number rand which however is different for every operation
is needed. On the one hand E1 is generated by point doubling the former
point Prandom rand-times (E1 = rand ∗ Prandom). E2 on the other hand is a
bit more complex to compute, as E2 = Pmessage + (priv + rand) ∗ Ppublic1 −
rand ∗ Ppublic2 + Psession. After the entire encryption process, in order to
convert all the characters back into a human-readable form, every tuple of
E1 and E2 needs to get mapped once again to the corresponding characters.

3.2.1.2.3 Message Decryption
For a successful decryption of the message, the last step in the entire encryp-
tion process needs to be undone first. Therefore, every pair of four characters
needs to be reverted to their point representations E1 and E2 in the character
code table. By applying Pmessage = E2 −(priv∗E1 +priv∗Ppublic1 +Psession)
the cipher point tuple is then converted to another point on the elliptic curve.
Once this result is mapped to the corresponding character within the table
again, the original decrypted symbol is finally obtained.

3.2.1.3 Signatures

Digital signatures are used to provide data origin authentication, data in-
tegrity and non-repudiation. Hence these schemes are commonly used to sign
certificates in order to bind together an entity and its public key. According
to Hankerson et al a signature scheme is hence said to be secure if it is ex-
istentially unforgeable by a computationally bounded adversary. Therefore,
by obtaining signatures of any message it should not be possible to repro-
duce a new valid signature[18]. Due to the absence of strong attacks against
elliptic curve cryptography this system is often used for applying digital sig-
natures. Furthermore, shorter bit lengths, compared to other cryptosystems,
can be used. As a matter of fact this results in shorter processing time, but
would also lead to shorter signatures. Hence the most widely used elliptic
curve-based signature scheme, namely the Elliptic Curve Digital Signature
Algorithm (ECDSA), has been standardized by the American National Stan-
dards Institute (ANSI) in 1998[29].

ECDSA signature generation
For generating a signature using the Elliptic Curve Digital Signature Al-
gorithm (algorithm 3.1), an elliptic curve limited over a certain field is
required. Therefore, the defined maximum p, as well as the resulting order
q of the curve, are two basic parameters for the algorithm. The process fur-
thermore needs the coefficients a and b that are defined by the used elliptic
curve equation of y2 = x3 ± ax ± b. In order to prohibit adversary from

3. Reverse engineering Amiibo 35

reproducing new valid signatures, the point Pprivate on the curve and the
random number priv, as the two private keys, are also required.

An ECDSA signature contains a pair of integers r and s with both pos-
sessing the same bit length as the order q of the utilized elliptic curve. In
order to get to these results, an ephemeral key kE ∈ N as a random number
in between the interval]0, q[has to be chosen first of all. By applying a point
duplication of Pprivate for exactly kE times, a new point R located on the
curve is obtained. The absolute value of the point’s x-coordinate modulo
q hereby marks the value of r respectively. In case r is by now set to 0,
this procedure however has to be redone again. By applying a hash function
to the message, the received hash is a compressed version that serves as a
further representative of the message. During the signing process s is then
computed by dividing the addition of the former hash and priv ∗ r with the
key kE modulo q.

Algorithm 3.1: ECDSA signature generation

INPUT: Elliptic curve domain parameters (maximum p, order q, coefficients
a & b, point Pprivate), hash function H, private key priv, message m

OUTPUT: Digital signature (r, s)
1: do
2: Choose an ephemeral key kE with 0 < kE < q and kE ∈ N

3: Compute the point R = (kE ∗ Pprivate) modulo p
4: Compute r = |xR| modulo q
5: while (r �= 0)
6: Get the hash h = H(m) of the message m using the function H
7: Compute s = (h+priv∗r

kE
) modulo q

8: Return the signature (r, s)

ECDSA signature verification
Unlike the signature generation process that should be kept private at all
costs, verifying a signature (r, s) should be possible anytime for anyone.
Hence no private keys are required as input for the algorithm 3.2, but
rather their public key counterparts are used. Furthermore, the used elliptic
curve has to be clearly distinct by the coefficients a and b, the maximum p
and the order q.

Taking the case that neither r nor s is within the range of the natural
numbers N or the interval [1, q − 1], the signature is already rejected in the
first place. Otherwise the auxiliary value w as the result of s−1 modulo q is
then computed. Further two variables u1 and u2 are obtained afterwards by
multiplying w with either the hashed message h = H(m) or r in combination
with another modulo q operation. By point doubling Prandom for u1 times
and adding u2 ∗ Ppublic2 to the former outcome, the most important part of
the entire verification process, the point Pverify on the curve, is received.

3. Reverse engineering Amiibo 36

If Pverify is however considered to be located somewhere near infinity due
to the high value of the x- or y-coordinate, the verification will be canceled
with a negative result. Lastly, only in case the absolute value of Pverify’s
x-coordinate modulo q is equal to r modulo q, the signature can be verified
as a valid one.

Algorithm 3.2: ECDSA signature verification

INPUT: Elliptic curve domain parameters (maximum p, order q, coefficients
a & b, point Prandom), hash function H, public key Ppublic2 , message m,
signature (r, s)

OUTPUT: Acceptance or rejection of the signature
1: if ((r or s /∈ N) or (r or s are not in the interval [1, q − 1])) then
2: Return (“Reject the signature”)
3: else
4: Get the hash h = H(m) of the message m using the function H
5: Compute auxiliary value w = s−1 modulo q
6: Compute auxiliary value u1 = w ∗ h modulo q
7: Compute auxiliary value u2 = w ∗ r modulo q
8: Compute Pverify = u1 ∗ Prandom + u2 ∗ Ppublic2

9: if (Pverify ≡) then
10: Return (“Reject the signature”)
11: else
12: Compute v = |xPverify

| modulo q
13: The verification follows from:
14: if (v �≡ (r modulo q)) then
15: Return (“Reject the signature”)
16: else . v ≡ (r modulo q)
17: Return (“Accept the signature”)
18: end if
19: end if
20: end if

3.2.2 Elliptic curve cryptography and Amiibos
Finding an elliptic curve with good cryptographic properties is a rather
hard task. Therefore, several recommended standards exist for an over-
all increased security. The elliptic curve that is used for Amiibos is one
of these, namely a 128-bit standardized elliptic curve over a maximum p
(secp128r1)[31]. For this, the curve equation is predefined as y2 = x3+a∗x+b
with a set to a constant value of 0xFFFFFFFD FFFFFFFF FFFF -
FFFF FFFFFFFC (approx. 3.4028 ∗ 1038) and b set to 0xE87579C1 10-
79F43D D824993C 2CEE5ED3 (approx. 3.0899∗1038). As 128 bit are used
for every numeric parameter, the maximum p = 0xFFFFFFFD FFFF -
FFFF FFFFFFFF FFFFFFFF (approx. 3.4028 ∗ 1038) is only slightly

3. Reverse engineering Amiibo 37

beyond the maximum attainable value of 2128. The randomly chosen pub-
lic point Prandom is also predefined by (0x161FF752 8B899B2D 0C28607C
A52C5B86, 0xCF5AC839 5BAFEB13 C02DA292 DDED7A83) which for
better clearance is approximately (2.9409 ∗ 1037, 2.7562 ∗ 1038). Therefore,
calculating the order q of the elliptic curve results in 0xFFFFFFFE 00-
000000 75A30D1B 9038A115 (approx. 3.4028 ∗ 1038).

As already stated above, for the case of Amiibos elliptic curve cryptog-
raphy is on the one hand used for the 32-bit password generation, as well as
for the signing process of the embedded NFC tag’s data on the other hand.
The public key for every Amiibo is defined by “NXP NTAG21x 2013” which
means that for each figure the exact same two private keys priv and Pprivate

are used. However, by the utilization of a NFC sniffer for surveilling and
tracing the connection between an Amiibo and the gaming console, these
logs revealed that the password is completely different for every tag. For an
example, a Yoshi Amiibo had the password 0x1C583C4C, whereas a Villager
Amiibo’s password was set to 0xC482C44C and a Super Mario figurine had
a value of 0x2CB2E8A5 as its password. Thus this leads to the assump-
tion that for the password encryption the Amiibos’ UIDs are then used as
the messages. This would apply for the signatures as well, as they are also
diverse for all Amiibos.

3.3 Communication protocol

Besides the many standards that exist for the NFC -technology, the struc-
tures and the flow of an established connection between NFC -reader and
one or several tags need to be clearly defined too. For this purpose these
schemes are categorized into separate layers, based on the Open Systems In-
terconnection Reference Model. Communication functions are hence divided
into following seven layers (enumerated from 1 to 7): Physical Layer, Data
Link Layer, Network Layer, Transport Layer, Session Layer, Presentation
Layer & Application Layer. A communication over NFC usually involves
three or four of the above mentioned layers (see figure 3.9).

Figure 3.9: Typical protocol stack of ISO/IEC 7816 NFC smart cards (the
Application Layer is not used for tags based on the ISO 14443 standard)[24]

3. Reverse engineering Amiibo 38

In this context the Physical Layer (layer 1) mostly defines the electrical
and physical specifications of the data connection. Therefore, the transmis-
sion of raw bit streams over a physical medium and furthermore the proto-
col for establishing and terminating a connection between two nodes is set
up here. Errordetection and -correction, besides the required anti-collision
methods, are part of the Data Link Layer. Within the Transport Layer, the
data transfer is declared (as already stated in section 2.2.2.2) and thus the
way of encoding the obtained bits of information for the used signaling tech-
nology. On the same level the data packages wrapped in so-called TPDU s
(transport protocol data units) are then bit-/block-wise transmitted. Only
NFC tags based on the ISO/IEC 7816 standards will use the Application
Layer as a part of the connection. At this level the application specific re-
quests and responses are hereby grouped to APDU s (application protocol
data units) within the former transport protocol data units.

3.3.1 Transmission protocol

For the block-wise and asynchronous transmission protocol three block types
as transport protocol data units exist: I-block, R-block & S-block.

• I-block (information-block): This block is either used to store data for
the Application Layer (later on set to APDU s) or it can be used to
exchange a command with the NFC tag and save its response.

• R-block (receive-block): This block indicates the exchange of either a
positive or a negative acknowledgment of the transmission.

• S-block (supervisory-block): This block contains parameters and con-
trols regarding the transmission protocol per se.

Figure 3.10: Block structure of the transmission protocol[24]

Then again each block consists of a prolog-field, an optional information-
field and last but not least an epilog-field (for reference see figure 3.10
above). The prolog-field in turn is further divided into one to three bytes.

3. Reverse engineering Amiibo 39

Hereby is the first byte the only non-optional one and is declared as the
protocol control byte (PCB) marking the type of the block. Especially for
R-blocks it depicts a possibly occurred error code. However, taking the case
of a used S-block, the value is set to a communication control command or
its result. Throughout the latter two bytes, several tags can be communi-
cated with simultaneously (set by the optional card identification byte CID),
whereas these tags are all differentiated over the node address (NAD) byte.
For R-blocks the following information-field is not available. Otherwise it is
always present and holds on the one hand data for the Application Layer
(for I-blocks only) or on the other hand it stores parameters and controls for
the transmission protocol (for S-blocks). At last in the epilog-field the two
byte errordetection code is saved as a checksum generated by the preceded
bytes.

With the aid of this protocol the NFC -reader and the tag can commu-
nicate with each other. For this, the active partner (the reader) transmits
a request to the passive partner (the tag). Later on the response is re-
turned to the reader again. Thus this procedure of exchanging I-blocks of
TPDU s happens in an ongoing and alternating fashion. The system is there-
fore said to operate in a half-duplex mode. As the NFC tag is now either
based on an ISO/IEC 14443 or on an ISO/IEC 7186 standard, two different
information-field structures are hereby differentiated.

For ISO/IEC 14443 based units, the information-field hereby starts with
a length definition and further contains a two byte command, as well as the
passed on data. According to the set command bytes, altogether six different
request-response pairs are defined:

• Attribute Request/Response
The Attribute Request serves as a connection buildup for the connec-
tion between NFC -reader and the transceiver. A REQA (request at-
tribute) command with a predefined command byte of 0x26 is sent out
to all NFC tags within reach and invites the ones that did not already
reply earlier to respond. In case no tag responds, the command is send
over and over again. Otherwise an ATQA (answer to request) block is
returned.

• Parameter Selection Request/Response
Right after the reader has received the ATQA block an anti-collision
method (ref 2.2.2.3) is triggered in order to receive the tag’s UID. De-
pending on the length of the UID several SELECT commands are sent
and therefore in turn the equal amount of SAK (select acknowledge)
responses are returned. Each of these request-result pairs is referred
to as a cascade level. Finally the tag gets activated whenever the last

3. Reverse engineering Amiibo 40

SAK announces (by the absence of an extra returned cascading byte)
that no further UID bytes are available.

• Deselect Request/Response
Once the tag received the former state of activation, it processes all
inquiries received from the reader unit. By casting a 0x5000 HLTA
command, the tag will get deselected. This means that it does not
respond to any requests any longer.

• Wakeup Request/Response
As the deselected state, evoked by the former deselect request, is equal
to a special type of awaiting state, the NFC tag can always become
reactivated again by the composite (0x52 & UID) WUPA wake-up
command. Tags in an active, idle or awaiting state do no longer re-
spond to a REQA request. These states have thus the further purpose
to easily distinguish between already processed tags and ones yet to
get selected. Just like for the attribute request, an ATQA response is
supposed to be the return value and hence initializes an anti-collision
method as well as the SELECT cascade blocks.

• Release Request/Response
In order to completely deactivate a tag and to entirely close the con-
nection, the release request is used. After transmitting the release re-
sponse, the tag is reverted to its initial state before the first activation.
A new REQA request is then needed in order to enable the communi-
cation again.

• Data Exchange Protocol Request/Response
While the reader possesses an established connection to the NFC tag,
these two units can exchange data with data exchange protocol request-
response pairs. All other commands that were not yet mentioned, just
like READ, WRITE, or the ones individually declared by the man-
ufacturer (examples for the NTAG215 of Amiibos are listed in table
3.1), fall within this scope.

For NFC tags that use ISO/IEC 7186 standards, the transferred data is
encapsulated in APDU s and is filled within the information-fields. Taking
the case that an application protocol data unit is however too big to fit
into only one block, it is split and transmitted in several parts. In this
scenario the exchange sequence is also set to a request-response pair. The
APDU request consists out of an obligatory header, containing the command
and some further connection parameters (like the used channel). According
to the command that is previously defined, a data body can be attached

3. Reverse engineering Amiibo 41

to the request. APDU responses then in turn possess the returned bits of
information wrapped in a data body, as well as 2 byte trailer indicating
either a successful or a failed communication.

3.3.2 Communication principle of Amiibos

Despite its rather easy usage, the NFC technology is with a maximum of
424kbit/s to 848kbit/s currently still limited to a field of applications with a
rapid transfer of little data rates. Therefore, for the transmission of a large
bulk of data it is considered good practice to use other signaling technologies
instead. In this case NFC is only used in order to submit a special type
of NDEF Message as the communication parameters that are required to
establish the other connection. As the tag embedded in Amiibos only stores
up to 540 byte, the communication is conveniently a direct peer-to-peer one
and no further specialized connection handover is required.

Figure 3.11: Communication principle of a NTAG215 NFC tag[28]

3. Reverse engineering Amiibo 42

After the reading NFC unit initialized a magnetic field, every tag that
comes within its range hence receives conducted electricity serving as a
power source. This so-called power-on reset (marked as POR in figure
3.11 above) therefore switches the NTAG215 to the IDLE state. The tag
remains in this state for as long as the capacitive circuit is not broken off or
until a REQA or WUPA request establishes the connection. The returned
ATQA response then starts an anti-collision method in order to clearly dis-
tinguish the UID of the NFC tag the reader wants to communicate with. As
the Amiibos’ UIDs always possess a length of 7 byte, SELECT commands
on two cascade levels are transmitted. For this, the first 0x9370 SELECT
command returns a SAK response containing a cascade byte of 0x88, indi-
cating that at least another cascade level exists, as well as the first three
bytes of the UID. Furthermore, a bit count check byte, as the result of cal-
culating an exclusive-or over the former four bytes, is returned. In case the
check byte indicates a failed transaction, the same request is performed over
and over again. Otherwise the second 0x9570 SELECT command is sent
out. Hereby is another SAK response, with the last four bytes of the UID
and another check byte set as content, obtained. The NFC tag will be set
to an ACTIVE state, if this transmission does not fail. All operations that
need no authentication can now be performed with the data exchange proto-
col request-response pairs. As for Amiibos the authentication process is only
required in order to write data to the tag. All other commands can already
become executed by now. This means that at this state the Amiibo’s data
can be read (by the READ command) and that the version can be asked
for (by GET_VERSION). Furthermore, it is even possible to request
the signature (with passing on READ_SIG) as well as the internal NFC
counter value (READ_CNT). By passing on the right password with the
PWD_AUTH authentication command (0x1B & 4 hexadecimal password
bytes), the tag is switched to the AUTHENTICATED state. Therefore,
while being in this state, the data can be written back to the NFC tag with
the WRITE command. If the password verification fails however, an inter-
nal counter for wrong attempts will be increased by one. Once this value
becomes, without being reset by a valid registration, larger than a prede-
fined maximum (for Amiibos this are seven tries) the tag will get inevitably
locked and unable to either be read or written to. By the HLTA request is
the tag deactivated again and does no longer respond to the reader. In order
to re-establish the connection again, a WUPA command and the following
SELECT cascade sequences need to be triggered.

3. Reverse engineering Amiibo 43

3.4 Software project

The preceding sections and the bits of information regarding Amiibos within
were the result of an autonomous research in this field. Therefore, these
findings were also directly applied to the corresponding software project. As
already mentioned in this chapter’s header, an Android library for the basic
Amiibo integration, as well as an Android application for the emulation of
Amiibos, had been targeted at first. Due to several difficulties that however
arose within the development phase, the scope of the software project was
changed to the Android library in question and an Android application in
order to backup Amiibo data. A screenshot taken from within the aforesaid
app is displayed below in figure 3.12. The entire software solution had never
been and will never be published for a usage outside of this bachelor thesis,
as a lot of resources with a copyright by Nintendo were used.

Figure 3.12: Screenshot taken from within the Amiibo-backup application
(resources are attached in A.2) on a HTC Nexus 9 running on Android 5.1.1

3.4.1 Emulating Amiibos
In order to completely emulate a NFC tag, it must operate in card emulation
mode. To achieve this on Android devices, the feature of Host-based Card
Emulation (HCE) is used[9]. Most of the time, a separate chip in the NFC
enabled Android device (the so-called Secure Element) will emulate the tag.

3. Reverse engineering Amiibo 44

For this, the tag to be emulated is first provisioned into the Secure Element
by any application. Afterwards the device can route all data directly to this
location. Since Android KitKat (version 4.4.x) a further method of HCE is
available. This variant does not involve a Secure Element and hence instead
of routing the protocol data units to the former, the data is passed on directly
to the host CPU.

Figure 3.13: The functional principle of Host-based Card Emulation for
Android: with a Secure Element (left) or without one (right)[9]

One essential requirement for the utilization of Host-based Card Emu-
lation on an Android device is, that the tag to emulate is based on sev-
eral ISO/IEC 7816 standards and hence uses an APDU structure. As the
NTAG215 NFC tag within an Amiibo is however based on the ISO/IEC
14443-2 Type A definition, HCE thus cannot be used to emulate Amiibos.
If not a stock Android image, but rather CyanogenMod version 9 or above,
is used as the device’s operating system, this restriction does not exist any
longer. But still, this does not change the fact that ISO/IEC 14443-2 based
tags cannot be emulated either. Some devices then in turn possess a special
embedded NFC controller (like the LG Nexus 5) that would also allow the
emulation of this tag type. But this functionality is not yet implemented, as
the possible gain of this would be generally speaking near nominal, compared
to the enormous effort of implementing this feature. Therefore, updating the
for this purpose required native libraries and rebuilding a custom image of
CyanogenMod or Android would clearly exceed the scope of the software
project for the bachelor thesis. Hence the software project was changed to
an application in order to backup Amiibo data.

3.4.2 Backing up Amiibos
In order to use an Android device for the communication with a NFC tag,
several precautions have to be made. This means that especially within the
AndroidManifest.xml file of the Android project several xml-tags have to be
defined first.

3. Reverse engineering Amiibo 45

As NFC is only supported since Android Gingerbread (version 2.3.3) this
has to be remarked in the code with:

<!-- Android 2.3.3+ (API level 10) is at least required -->
<uses-sdk android:minSdkVersion='10' android:

targetSdkVersion='23'/>

Furthermore, in order to grant the access permission to the NFC feature
and to limit the application to NFC enabled devices, the following lines of
code are used:

<!-- Request permission to use NFC -->
<!-- Note that by targeting Android Marshmallow (6.0.x; API

level 23) permissions are handled at runtime! -->
<uses-permission android:name='android.permision.NFC'/>

<!-- Restrict the usage to NFC enabled devices -->
<uses-feature android:name='android.hardware.nfc' android:

required='true'/>

3.4.2.1 Establishing a connection

At this point all precautions are made and a connection can be established at
any time. For this, an Android Activity starts receiving Intents whenever a
NFC tag comes within reach. In order to avoid wild cards (because we would
like to limit the interactions to Amiibo tags though) an Intent-filter needs
to be set. Amiibos are based upon the NFC Type A signaling technology,
whereas this needs to be defined within an xml-file as a tech-list:

<!-- Amiibo tags fall within these 3 definitions, hence
filter for these Intent-flags -->

<tech-list>
<tech>android.nfc.tech.NfcA</tech>
<tech>android.nfc.tech.MifareClassic</tech>
<tech>android.nfc.tech.MifareUltralight</tech>

</tech-list>

At last this Intent-filter needs to be mapped in the AndroidManifest.xml
to the Activity that should respond to the Amiibos. Therefore, the following
code snippet is put within the corresponding Activity’s root tag:

<intent-filter>
<action android:name="android.nfc.action.TECH_DISCOVERED"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
<!-- The resource marks the former defined tech-list -->
<meta-data android:name="android.nfc.action.TECH_DISCOVERED"

android:resource="@xml/nfc_tech_filter"/>

3. Reverse engineering Amiibo 46

By now the Activity only receives Intents from tags within range that
have the same properties as Amiibos. Stored within these Intents are objects
that represent the state of the found NFC tag at the time of its discovery.
Therefore, these representations can be obtained in the Activity’s overridden
onNewIntent(Intent) method by:
@Override
protected void onNewIntent(Intent intent){

//Important to call the super method here too
super.onNewIntent(intent);

//Just to be sure if this Intent was the one received from the Amiibo
if(NfcAdapter.ACTION_TECH_DISCOVERED.equals(intent.getAction())){

//The Intent came from the Amiibo, now get the tag reference
Tag nfcTag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
//Better ’cast’ it to a MifareUltralight, to use a high-level API later
MifareUltralight amiiboTag = MifareUltralight.get(nfcTag);

}
}

3.4.2.2 Reading the Amiibo s data

Once we received the MifareUltralight object, the tag’s data can be read. For
this, the amiiboTag.connect() method needs to get executed first in order
to connect to the NFC tag. Afterwards exactly 16 byte can be read at once
by each amiiboTag.readPages(pageIndex) call. After all the desired data had
been read, the amiiboTag.close() method needs to get called in order to close
the connection again, as this allows the connection with other tag objects.

Algorithm 3.3: Reading Amiibo data

INPUT: The Amiibo tag reference as MifareUltralight object
OUTPUT: 135 pages (540 byte) stored on the Amiibo

1: try
2: Connect to Amiibo
3: for (i = 0 to 134

4) do . 4 pages (32 bit) are read at once
4: Read 4 pages beginning at index 4 ∗ i
5: Save the received values
6: end for
7: Close connection to Amiibo
8: Return the saved data read from the Amiibo
9: catch (No connection to tag.)

3.4.2.3 Writing data to the Amiibo

In strong comparison to the reading procedure, the Amiibo needs to get
authenticated before data can be written back to the tag. Therefore, right

3. Reverse engineering Amiibo 47

after the obligatory amiiboTag.connect(), an amiiboTag.tranceive() proce-
dure, with the 0x1B PWD_AUTH command byte and the 32-bit password
as parameters, needs to get executed. Only in case this transaction suc-
ceeded, an amiiboTag.writePage(pageIndex, 32-bit proprietary data) can be
used to write the data back again.

Algorithm 3.4: Writing data to the Amiibo
INPUT: The Amiibo tag reference as MifareUltralight object

1: try
2: Connect to Amiibo
3: Execute authentication command . requires the 32-bit password
4: for (i = 0 to 134) do
5: if (The page address i is not locked) then
6: Write 4-byte array to page address i
7: else
8: Do not try to write the data to the page address i
9: end if

10: end for
11: Close connection to Amiibo
12: catch (No connection to tag./Authentication failed.)

The aforesaid Android library for basic Amiibo integration therefore eases
the usage as it already implements these features. Furthermore, the read
data would only be available in its byte-wise representation, whereas the
library automatically parses it into a human readable form on the principle
of the Amiibo data page table as well. For example, this means that Amiibos
are right after being scanned also recognized by their appropriate Amiibo
series, their type and the video game character they represent. Additionally
several more functions for an easier interaction with Amiibos are provided in
the library too, like getting the UID or comparing the NFC counter value.

As the Android application uses this library, it is hence also possible to
scan Amiibos, to stack all their different save states within and, in case the
password would be available, to write the data back to a certain Amiibo.
Based on the latest standards of the Android Material Design, the user
interface visually displays the gathered list of all scanned Amiibos. For this,
it is also possible to further sort the list by four predefined criteria: video
game characters, video game series, Amiibo series & Amiibo types.

Chapter 4

Conclusion

4.1 Conclusion

Near field communication based platforms in gaming are basically just NFC
tags that are nicely wrapped by some sort of plastic toy, depicting a well-
known video game character. Consequently they form a phygital (physical
and digital) extension to the video games that implement a support for
them. Hence depending on the video game and the figure, the figurine has a
specialized purpose. On the one hand new content can be unlocked within
the game, but on the other hand even some more complex interactions can be
possible. Also special about this technology is that the save data from within
the game is not stored on the gaming console, but rather on the tag per
se. At the time of writing, three big franchises (namely Skylanders, Disney
Infinity & Amiibo) and one (Lego Dimensions) that is shortly released after
the submission of this bachelor thesis, exist within this field. Especially the
technology of Amiibos had been highlighted, as the corresponding software
project is also based on it. Based on these findings, an Android library for
a basic Amiibo integration as well as an Android application for backing
up Amiibo data was implemented. Despite a NFC Forum Type 2 tag is
embedded, a special data page table representation is used for Amiibos and
not all standards are therefore met. Elliptic curve cryptography is used for
the tag’s digital signature, as well as for the generation of a 32-bit password
for the overall security of Amiibos.

4.2 Future of NFC in gaming

As Disney acquired Lucasfilm back in 2012, the company also gained the
rights to the Star Wars franchise as a result. For Disney Infinity 3.0: Play
Without Limits that is scheduled to be released in autumn 2015 one of
the many upcoming figure sets is based upon Star Wars characters and is
therefore already going to be distributed at launch. All previously released

48

4. Conclusion 49

Disney Infinity NFC figurines from the two former editions will still be
compatible with version 3.0. The following chart 4.1 hence visually displays
the course of the evolution of this technology and indicates the amount of
available figure models at specific dates.

Figure 4.1: Chart displaying the amount of released Disney Infinity fig-
urines over the time

Then again, especially September 2015 is going to play an important role
for the future of NFC based platforms in gaming, with the release of both
Lego Dimensions and Skylanders: Super Charger. At the initial release of
Lego Dimensions already 14 different sets, which all are based on different
franchises, will be available. This number is going to be constantly increased
over the time, as by now it is confirmed that at least six new franchises will
get included post launch.

Figure 4.2: Chart displaying the plans for of releasing Lego Dimensions
figurines over the time

The product line of Skylanders: Super Charger is already the fifth installment
of this series, whereas a total amount of 372 different figures exists even be-
fore its market entrance. Furthermore, the first Amiibo-Skylander crossover
figurines are going to be part of this line-up. Activision also announced that
in 2016 battle cards, similar to the Amiibo cards, starring Skylanders and
their enemies will be launched. The corresponding video gaming software

4. Conclusion 50

however is in turn not bound to any gaming console, but rather it is only
deployed on iOS and Android devices. Just like for the other entries of this
series, right after being scanned the Skylanders will be transferred for their
usage into the game.

Figure 4.3: Chart displaying the amount of released Skylanders figurines
over the time

Then again Amiibos possess an extremely big and dedicated fan base, as the
announcement of every figure is being eagerly awaited. This is one of the
reasons why most of the figurine contingents are already out of stock shortly
after the initial launch. Sometimes Nintendo is still not even capable of pro-
viding additional delivery units due to the tremendous demand. Therefore,
some character models are really seldom and are thus occasionally sold for
up to four or five times the original price. Sometimes even defect Amiibos
with a production fault that makes them unique in a special way are sold
at high prices. For example a Samus Aran Amiibo which featured two arm
canons instead of just one had been sold for approximately $2.500. An even
more staggering price of $25.100 (by a normal price of $13/e15) was paid
for a Princess Peach Amiibo that had no legs and hence seemed to float in
the air. Then again the multi-platform video game Shovel Knight will get its
own Amiibo in October 2015 and therefore also possibly smooths the way
for further third-party Amiibos.

Figure 4.4: Chart displaying the amount of released Amiibo figurines over
the time

4. Conclusion 51

All in all, the future of NFC based platforms in gaming looks rather bright,
as the market for this segment is constantly growing. For this, the companies
are frequently updating their product assortment and hence new figures are
launched every month. Furthermore, long-term plans exist in order to keep
the brands exciting and attractive to the gamers. Thus many presentations
at the latest installment of the Electronic Entertainment Expo in 2015 were
heavily influenced by the “toy to life”-concept, mostly in order to show off
these plans to the public. Altogether it can be stated that the demand for
new figures of all the existing franchises in this market segment will not cease
any time soon. Even though the functionality within video games might not
always properly adapt to the increasing assortment, the “toy to life”-figures
are nevertheless still commonly used as collectible items. With all of this
in mind, I am very sure this NFC technology in gaming will accompany us
gaming enthusiasts for a very long time.

Appendix A

Content of the CD-ROM
Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Bachelor thesis

Pfad: /

petereder_nfc_based_platforms_in_gaming.pdf Bachelor thesis Near
field communication based platforms in
gaming as a PDF-file

Latex_Files/ LaTeX-files

A.2 Project les

Pfad: Project/

Amiibo_Library/ Source-folder of an Android-based library for
basic Amiibo integration

Amiibo_Backup_App/ Source-folder of an Android application used
for Amiibo Backups

Sources_Support_Library/ Source-folder of the Android-Support v7
Appcompat library (Revision 22) with
customized changes

Sources_Custom_Support_Library_v4/ Source-folder of the
Android-Support v4 library (Revision 22)
with customized source code

A.3 Amiibo les

Pfad: Amiibo_Files/

52

A. Content of the CD-ROM 53

Amiibo_Dumps/ Folder containing gathered dumped Amiibo
tags

Amiibo_Sni er_Traces/ Folder containing gathered Amiibo traces
with a NFC Sniffer

A.4 Literature

Pfad: Literature/

NFC_roland_langer.pdf Literature [24]
NFC_cuno.pdf Literature [14]
RFID_overview.pdf . . Literature [32]
NTAG213_215_216.pdf Literature [28]
NFC_Technology_Games.pdf Literature [33]
Skylanders_NFC_in_livingroom.pdf Literature [13]
ESA-Essential-Facts-2015.pdf Literature [10]
NFC_Gami cation.pdf Literature [21]
NFC_toys_educational.pdf Literature [11]
NFC_augmented_toy_environment.pdf Literature [23]
Gami cation_in_Softwareentwicklung.pdf Literature [16]
NFC_AR_Interaction_MGaming.pdf Literature [15]
NFC_ubiquitous_games.pdf Literature [17]
hinske_classifyingpervasivegames.pdf Literature [19]
NFC_Forum_Type_Tags.pdf Literature [27]
NFCForum_Type-2-Tag.pdf Literature [26]
GuideEllipticCurveCryptography.pdf Literature [18]
koppensteiner_diplomarbeit.pdf Literature [20]
ellipticCurves_cryptography_elaine.pdf Literature [12]
Understanding_Cryptography Literature [29]
ecc_encryption Literature [22]
ECC_Standards_v1.0 . Literature [31]

A.5 Online sources

Pfad: Online_Sources/

nfc_forum_org_speci cations_and_application.pdf Literature [3]
nfc_forum_org_what_is_nfc_what_it_does.pdf Literature [2]
www_gameswelt_at_special_sinn_und_unsinn_von_amiibo.pdf

Literature [4]

A. Content of the CD-ROM 54

www_near eldcommunication_org_nfc_signaling.pdf Literature [1]
www_safaribooksonline_com_ndef.pdf Literature [5]
arstechnica_primer_ecc.pdf Literature [6]
NFC_basics_android_developer.pdf Literature [7]
NFC_advanced_android_developer.pdf Literature [8]
NFC_HCE_android_developer.pdf Literature [9]

A.6 Images

Pfad: Images/

BA-images/ folder containing all images used in this
bachelor thesis

Project-screenshots/ . . folder containing screenshots taken from
within the software project’s Android
application

References

Literature

[10] Entertainment Software Association. 2015 Sales, demographic and us-
age data. Essential facts about the computer and vide game indus-
try. statistics. USA: Entertainment Software Association, 2015 (cit.
on pp. 1, 53).

[11] Emilia Biffi et al. “NFC-based application with educational purposes”.
In: 8th International Conference on Pervasive Computing Technolo-
gies for Healthcare. (May 20 23, 2014). Oldenburg, Germany, 2014,
pp. 370 372 (cit. on p. 53).

[12] Elaine Brow. “Elliptic Curve Cryptography”. 2010 (cit. on p. 53).
[13] Paul Coulton. “SKYLANDERS: Near Field in Your Living Room

Now”. In: Ubiquity: The Journal of Pervasive Media 1 (September/Oc-
tober 2012), pp. 136 138 (cit. on pp. 3, 53).

[14] Andrea Cuno. “Near field Communication”. German. Munich, Ger-
many: Technische Universitt Mnchen, 2010 (cit. on pp. 9, 15, 53).

[15] Erik Einebrant. “NFC and AR Interaction in Mobile Gaming”.
Gothenburg, Sweden: Chalmers University of Technology, 2012 (cit.
on pp. 2, 53).

[16] Michael Fecher. “Gamification in der Softwareentwicklung: Chan-
cen und Mglichkeiten”. German. Wrzburg-Schweinfurt, Germany:
Hochschule fr angewandte Wissenschaften Wrzburg-Schweinfurt, 2012
(cit. on p. 53).

[17] Pilar Castro Garrido et al. “Near Field Communication in the Devel-
opment of Ubiquitous Games”. Crdoba, Spain: University of Crdoba,
2010 (cit. on p. 53).

[18] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to El-
liptic Curve Cryptography. Springer, 2004 (cit. on pp. 34, 53).

[19] Steve Hinske et al. “Classifying Pervasive Games: On Pervasive Com-
puting and Mixed Reality”. Zurich, Switzerland: Institute for Perva-
sive Computing (cit. on pp. 2, 53).

55

References 56

[20] Clemens Koppensteiner. “Mathematical Foundations of Elliptic Curve
Cryptography”. Vienna University of Technology, 2009 (cit. on p. 53).

[21] Matthias Kranz, Lukas Murmann, and Florian Michahelles. “Research
in the Large: Challenges for Large-Scale Mobile Application Research.
A Case Study about NFC Adoption using Gamification via an App
Store”. 2013 (cit. on p. 53).

[22] D. Sravana Kumar, CH. Suneetha, and A. Chandrasekh. “Encryption
of data using Elliptic Curve over finite fields”. In: International Jour-
nal of Distributed and Parallel S ystems 3 (January 2012), pp. 301
308 (cit. on p. 53).

[23] Matthias Lampe, Steve Hinske, and Sandra Brockmann. “Mobile
Device-based Interaction Patterns in Augmented Toy Environments”.
Zurich, Switzerland: Institute for Pervasive Computing, 2006 (cit. on
p. 53).

[24] Josef Langer and Michael Roland. Anwendungen und Technik von Near
Field Communication (NFC). German. Hagenberg, Austria: Springer-
Verlag Berlin Heidelberg, Mar. 2010 (cit. on pp. 9 12, 14, 16, 17, 19,
22, 37, 38, 53).

[25] NFC Forum NFC Data Exchange Format (NDEF). Technical Specifi-
cation. Version 1.0. NFC Forum. July 2006.

[26] NFC Forum Type 2 Tag Operation Specification. Technical Specifica-
tion. Version 1.1. NFC Forum. May 2011 (cit. on pp. 20 22, 53).

[27] NFC Forum Type Tags. White Paper V1.0. Technical Specification.
Version 1.0. NXP Semiconductors. Apr. 2009 (cit. on p. 53).

[28] NTAG213/215/216. NFC Forum Type 2 Tag compliant IC with
144/504/888 bytes user memory. Product data sheet. Version 3.1.
NXP Semiconductors. Dec. 2013 (cit. on pp. 20, 21, 24, 25, 41, 53).

[29] Christof Paar and Jan Pelzl. Understanding Cryptography. A Textbook
for Students and Practitioners. Springer, 2009 (cit. on pp. 30 32, 34,
53).

[30] Dominique Paret, Xavier Boutonnier, and Youssef Houiti. NFC (Near
Field Communication). Principes et applications de la communication
en champ proche. French. Dunod, 2012 (cit. on p. 22).

[31] STANDARDS FOR EFFICIENT CRYPTOGRAPHY. SEC2: Recom-
mended Elliptic Curve Domain Parameters. Standard reference. Ver-
sion 1.0. Certicom Research. Sept. 2010 (cit. on pp. 36, 53).

[32] Ron Weinstein. “RFID: A Technical Overview and Its Application to
the Enterprise”. In: IT Professional 7 (May/June 2005), pp. 27 33
(cit. on pp. 10, 53).

References 57

[33] Jennifer Zaino. “NFC Technology brings new life to games”. In: RFID
Journal 9 (September/October 2012), pp. 28 32 (cit. on p. 53).

Online sources

[1] url: http://www.near eldcommunication.org/nfc-signaling.html (vis-
ited on 05/25/2015) (cit. on pp. 14, 54).

[2] url: http ://nfc - forum.org/what - is - nfc/what - it - does/ (visited on
05/30/2015) (cit. on pp. 15, 53).

[3] url: http://nfc- forum.org/our-work/speci cations- and- application-
documents/speci cations/protocol-technical-speci cations/ (visited on
05/31/2015) (cit. on p. 53).

[4] url: http://www.gameswelt.at/wii- u/special/sinn-und-unsinn-von-
amiibo- guren,238143 (visited on 05/25/2015) (cit. on p. 53).

[5] url: https://www.safaribooksonline.com/library/view/beginning-nfc/
9781449324094/ch04.html (visited on 05/31/2015) (cit. on pp. 16, 54).

[6] url: http : / / arstechnica . com / security / 2013 / 10 / a - relatively - easy -
to - understand - primer - on - elliptic - curve - cryptography/ (visited on
07/14/2015) (cit. on pp. 32, 33, 54).

[7] url: https://developer.android.com/guide/topics/connectivity/nfc/nfc.
html (visited on 08/22/2015) (cit. on p. 54).

[8] url: https://developer .android.com/guide/topics/connectivity/nfc/
advanced-nfc.html (visited on 08/22/2015) (cit. on p. 54).

[9] url: https://developer.android.com/guide/topics/connectivity/nfc/hce.
html (visited on 08/22/2015) (cit. on pp. 43, 44, 54).

