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Abstract

Brain-computer interfaces (BCIs) based on electroencephalography (EEG) enable
direct communication between humans and computers by analyzing brain activity.
Specifically, modern BCIs are capable of translating imagined movements into real-
life control signals, e.g., to actuate a robotic arm or prosthesis. This type of BCI is
already used in rehabilitation robotics and provides an alternative communication
channel for patients suffering from amyotrophic lateral sclerosis or severe spinal cord
injury. Current state-of-the-art methods are based on traditional machine learning,
which involves the identification of discriminative features. This is a challenging
task due to the non-linear, non-stationary and time-varying characteristics of EEG
signals, which led to stagnating progress in classification performance. Deep learning
alleviates the efforts for manual feature engineering through end-to-end decoding,
which potentially presents a promising solution for EEG signal classification.
This thesis investigates how deep learning models such as long short-term memory
(LSTM) and convolutional neural networks (CNN) perform on the task of decoding
motor imagery movements from EEG signals. For this task, both a LSTM and a
CNN model are developed using the latest advances in deep learning, such as batch
normalization, dropout and cropped training strategies for data augmentation.
Evaluation is performed on a novel EEG dataset consisting of 20 healthy subjects.
The LSTM model reaches the state-of-the-art performance of support vector ma-
chines with a cross-validated accuracy of 66.20%. The CNN model that employs a
time-frequency transformation in its first layer outperforms the LSTM model and
reaches a mean accuracy of 84.23%. This shows that deep learning approaches de-
liver competitive performance without the need for hand-crafted features, enabling
end-to-end classification.
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Chapter 1

Introduction

People with severe neuromuscular disorders, such as late-stage amyotrophic sclerosis
(ALS) and those paralyzed from higher level spinal cord injury are unable to actuate
any of their muscles. Communication with the outside world is therefore problem-
atic for the suffering people. Cognitive and sensory body functions, however, are
often only minimally affected. Therefore, an electroencephalogram (EEG)-based
communication which does not require any neuromuscular control is considered to
be particularly helpful to enhance the disabled’s quality of life by increasing their
independence [1].

This work focuses on EEG-based brain-computer interfaces (BCIs) for decoding
motor imagery left- and right-hand movements to control a robotic arm or prosthesis,
contributing to the advancement in rehabilitation robotics. The classification of
motor imagery EEG is a challenging task. Due to the low signal-to-noise ratio and
non-linear, time-varying characteristics of the signals, one of the key problems of BCI
design is the identification of discriminative features. While previous work focusing
on the well-known motor imagery patterns has achieved impressive results [2, 3],
the progress in BCI performance has been stagnating in the recent years. Novel
approaches in the field of deep learning present a promising solution to decode EEG
signals without the need for creating hand-crafted features [4].

This work aims to investigate the potential of deep learning methods to classify
binary motor imagery movements in EEG signals. Investigated approaches include
the long short-term memory (LSTM) recurrent neural networks (RNNs) as well
as convolutional neural networks (CNNs) (described in Sections 2.3.2 and 2.3.4,
respectively). While RNN-based models have reached state-of-the-art performance
in sequential data processing tasks, such as natural language processing [5], CNNs
outperform previous methods in computer vision and speech recognition [6]. Given
that neural activity measured by EEG can be regarded as highly dynamic, non-linear
time series data, RNNs appear to be the tool of choice for modeling the temporal
dynamics of brain activity. However, RNNs have not yet been widely used in the



6 CHAPTER 1. INTRODUCTION

field of EEG classification [7].

In the following, this thesis first describes the technical background of BCIs, in-
cluding the biological characteristics and acquisition of EEG signals. Then, a brief
introduction to the concepts of deep learning and related work in the area of BCI
research is presented. Finally, the implementation of the proposed LSTM and CNN
models is explained and evaluated on data recorded at NST.
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Chapter 2

Technical Background

This chapter first introduces the principles and characteristics of EEG-based brain-
computer-interfaces (BCIs) in general. Then, the underlying processes for oscillatory
brain signals measured by EEG and a common practice EEG recording protocol are
explained. Furthermore, basic concepts of neural networks and deep learning are
described.

2.1 EEG-based Brain-Computer Interface

A BCI is a platform for communication between a human being and a machine that is
based on brain signals, bypassing the need of neuromuscular involvement. There are
both invasive and non-invasive methods of monitoring the brain’s neural activity for
the use in a BCI, whereby this work focuses on non-invasive electroencephalography
(EEG)-based interfaces. A BCI typically aims to estimate its user’s mental state
or intent from the monitored signals and translate it into a physical action, e.g.,
to control a neural prosthesis. In general, a BCI relies on five main components:
data collection or recording to retrieve raw neural activity, signal (pre-) processing
to eliminate undesired noise, feature extraction to obtain abstract insights from the
recording, classification to interpret the extracted features and decide on the user’s
intent, and a feedback or output stage that either provides feedback of the decision
made by the system or translates the brain signals into physical movements of a
robotic system [8].

BCIs can be categorized into two types based on the monitored EEG feature,
i.e., event-related or oscillatory brain activity. Event-related potential (ERP)-based
BCIs, also called reactive BCIs, rely on external time-locked stimuli. The stimuli pro-
voke temporally correlated waveforms in the EEG signal that are well-characterized.
ERP-based BCIs in general are relatively robust across subjects when compared to
BCIs based on oscillatory processes [9]. BCIs based on oscillatory processes are also
called active BCIs, because they do not rely on external stimuli, are not time-locked,
and are able to translate voluntary, self-paced mental tasks into physical control [10].
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Active BCIs are in general more challenging to design due to a lower signal-to-noise
ratio (SNR) and strong variability across different subjects.
The underlying brain processes of oscillatory EEG features are briefly described in
the following section.

2.1.1 Sensory Motor Rhythms and Motor Imagery

The EEG features of interest in this work are sensory motor rhythms (SMR). SMR
are a common control signal for active BCIs because of their recognizable and stable
patterns in the noisy EEG recordings. Characteristics of SMR can be described by
the desynchronization of neural activity over the sensorimotor cortex in α- (8 Hz
- 13 Hz) and β- (12 Hz - 25 Hz) frequency bands during a physical or imagined
movement of limbs.

Actual Movement Motor Imagery

Figure 2.1: Visualization of activated brain regions during motor execution and
imagery recorded by fMRI. Illustration adapted from [11].

SMR can be induced induced by the mental rehearsal of a physical task. This men-
tal strategy is also refereed to as motor imagery (MI) [12]. On a neurophysiological
level, similar brain regions are activated during motor execution and motor imagery,
however, the performance is blocked at a corticospinal level. Studies based on fMRI
showed similar activation patterns during motor imagery and actual movement ex-
ecution [11], which can be seen in Figure 2.1. For operating an active BCI, motor
imagery has proven its capability as an efficient mental strategy.

2.1.2 EEG Data Acquisition

The first stage in a BCI is the essential task of data collection. In order to systemati-
cally accumulate data for training MI-based decoding systems, de-facto standardized
recording protocols have been designed.

EEG Recording Protocol for Motor Imagery

As an example for a typical EEG experimental paradigm for recording motor im-
agery, the Graz B dataset is explained [13]. In the data set three bipolar electrodes
(C3, C4 and Cz ) are recorded with a sampling frequency of 250 Hz. The cue-based
experimental paradigm is shown in Figure 2.2.
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Figure 2.2: Typical EEG Recording Protocol (taken from Graz BCI Competition
2008, data set B [3])

The paradigm consists of two motor imagery classes for left and right hand move-
ments. Each trial starts with a fixation cross following an acoustic warning signal at
t = 2 s. At t = 3s a visual cue is presented for the duration of 1.25s. Subsequently,
the participant was instructed to imagine the corresponding movement over a period
of 4 seconds. A short break of 1.5 s followed the trial. Additionally, a randomized
break of up to 1 second followed the previous break to avoid adaption of the partici-
pant to the protocol. The data set contains a total of 9 subjects with 120 trials each.
After executing the motor imagery, for example for four seconds, a rest period and
the preparation for the next trial follow. Since motor imagery is very exhausting, no
more than 120 trials can be conducted without loss of quality. Electrooculography
(EOG) was also recorded in the Graz B dataset, which further improves the data
quality because the interference of eye movements can be removed through indepen-
dent component analysis (ICA). Furthermore, trials that are strongly affected by
muscular noise can be marked as bad trials and excluded from further analysis.

Electrode Placement

For the positioning of the EEG electrodes on the scalp an internationally recognized
topology called the 10-20 EEG system is widely used (see Figure 2.3 for illustra-
tion). It was developed to ensure reproducibility and comparability of results by
standardizing the electrode positions. The system is based on the relationship be-
tween the location of an electrode and the underlying area of the cerebral cortex.
The ”10” and ”20” refer to the fact that the actual distances between adjacent elec-
trodes are either 10% or 20% of the total front-back or right-left distance of the skull
[14]. Previous studies show that electrode positions C3, Cz and C4 are suitable for
recording characteristic motor imagery signals as they are directly covering part of
the sensorimotor cortex.
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Figure 2.3: International standard 10-20 electrode placement system.

2.2 Artificial Neural Networks

This section introduces the concept of artificial neural networks and deep learning.

In the area of computer science and engineering, artificial neural networks (ANNs),
or simply neural networks (NNs), are information processing systems inspired by
the biological neural networks that constitute our brain [15]. A NN is a network
of interconnected nodes (also known as neurons) that serve as simple processing
units. Each neuron communicates with one or many other neurons using weighted
connections, comparable to synapses in biological systems. When comparing ANNs
with biological neural networks, both resemble each other in the way that both
acquire knowledge in a learning process which is stored in the connections between
the neurons [16].
Neural networks find their use in a wide variety of tasks in machine learning, pattern
recognition, regression or time-series prediction. Even though architectures of ANNs
evolve continuously, the building blocks, i.e. neurons, activation functions and the
layered structure remain typical [17].

Neuron

A neuron is a node in a NN. Neurons receive inputs from incoming connections
from other neurons and potentially themselves weighted by a factor w. Each neuron
computes the sum of received and weighted signals and a bias term, passes it through
an activation function and forwards the output through weighted connections to
other neurons (see Figure 2.4).

Layer

Neurons in a NN are structured into layers. Typically, a NN consists of an input
layer, one or more hidden layers and an output layer. Each layer receives its inputs
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Figure 2.4: A basic neuron model.

from previous layers (and potentially itself) and passes its outputs to the subsequent
layer. The input layer consists of D nodes (where D is the dimensionality of the
input data) that each take a component of an input vector x ∈ X 1, and forwards the
processed output to the subsequent layer. Hidden layers are defined as intermediate
layers situated between input and output layers, performing computations within
the network. The number of neurons in a layer is referred to as width, the number
of (hidden) layers as depth. A NN with more than three stacked hidden layers
is called deep neural network (DNN). DNNs and the implications of using deeper
architectures will be discussed in more detail in Section 2.3. For classification tasks,
an output layer typically consists of one neuron per class. The computed value of
an output neuron k represents the posterior probability of the input x belonging to
class k. The computations of the incoming signals for a layer can be expressed in th
form of a weight matrix W by concatenating the individual weights w. The weight
matrices W for all layers together with the bias vectors b constitute the parameters
Θ of the NN model [18].

Activation functions

An activation function computes a scaled output of the weighted sum of the in-
puts. In order to be able to discover non-linear classification boundaries, activation
functions are commonly chosen to be also non-linear. In principal, any thinkable
function could be used as an activation function, but in the course of time a few
distinct functions have proven themselves of value (cf. Figure 2.5):

• Sigmoid function

σ(x) =
1

1 + e−x
(2.1)

The sigmoid function, also referred to as logistic function, is a smoothened
approximation of the step function used in early-day ANNs. Its output is

1Bold math symbols denote vectors and matrices in the following
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bound in the range [0, 1], making it suitable for the use in output neurons for
classification tasks.

• Hyperbolic tangent (tanh)

tanh(x) =
ex − e−x
ex + e−x

(2.2)

The hyperbolic tangent shows a shape similar to the logistic function, vertically
scaled for outputs in the range [−1, 1].

• Rectified linear unit (ReLU)

ReLU(x) = max(0, x) (2.3)

The ReLU enables sparse representations inside the NN by clipping negative
values of x to 0. It also prevents the network from vanishing gradients and
saturation problems that are common obstacles when working with deep neural
networks [19].

• Exponential linear unit (ELU)

ELU(x) =

{
x if x ≥ 0

α(ex − 1) otherwise
(2.4)

ELUs are different from ReLUs for values x < 0, setting the lower bound to
−α, where α is a tunable hyperparameter with the constraint α ≥ 0. ELUs
push the mean activations closer to zero, which has been shown to speed up
the learning process [20].

• Softmax function

softmax(x)j =
exj∑
m e

xm
(2.5)

The softmax for a vector x is defined for each of its components xj to satisfy the
conditions softmax(xj) > 0 and

∑
m softmax(xm) = 1. It is commonly used for

multiclass classification tasks, providing a normalized probability distribution
over the output neurons [21].

Multilayer perceptron

With the previously introduced building blocks, it is now possible to build a simple
neural network, e.g., the multi layer perceptron (MLP) [22]. In this simple NN
architecture, the inputs are processed sequentially layer by layer, i.e., a layer only
receives signals from its immediate predecessor (see Figure 2.6). A MLP takes a
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Figure 2.5: The sigmoid function, hyperbolic tangent (tanh), exponential linear unit
(ELU, with α = 1.0) and rectified linear unit (ReLU) activation functions. While
the logistic and tanh functions saturate, both ELU and ReLU grow without upper
bounds for positive values of x.

vector x as an input, calculates hidden activations h and outputs a vector ŷ as
follows:

h = α1(W
xhx + bh) (2.6)

ŷ = α2(W
hŷh + bŷ) (2.7)

where W ij describes the weight matrix connecting two neighboring layers. Specif-
ically, W xh are the weights connecting input layer to hidden layer, W hŷ are the
weights connecting hidden layer to output layer, bl is a bias vector for layer l, and
αi(x) where i ∈ {1, 2} are activation functions. Note that activation functions are
applied element-wise when they are computed for all neurons in a layer simulta-
neously using matrix-vector notation as above. When multiple hidden layers are
referred to, hl is the subsequent layer to hl−1, where l ∈ {1, . . . , L} and L denotes
the total number of hidden layers.

Weight initialization

At the beginning of the network construction, the weights W and biases b are set to
initial values. A common assumption is that positive and negative weights even out
if they are properly initialized. However, the weights should not be universally set
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Inputlayer Hiddenlayers Outputlayer
Figure 2.6: A multi layer perceptron with 2 hidden layers. Bias terms are omitted
for clarity.

to zero because the backpropagated error and thus the gradient will be identical for
all neurons in the network, since the output layer neurons show the same output.
To break the symmetry between the weights, weights are usually initialized to small
randomized values, keeping them close to zero [23]. The common procedure when
using ReLU activation functions for the neurons is to draw a weight vector from a
Gaussian with scaled variance relative to the number of input units n:

wl
ij =

√
n

2
· rand(n) (2.8)

where wl
ji is the weight connecting the ith neuron in layer l to the jth neuron in layer

l+ 1, rand(n) is a function sampling n values from a Gaussian distribution and the

term
√
2
n

scales the variance, here with respect to the ReLU activation function.

Cost functions

For input x a prediction ŷ is computed at the output layer and evaluated using
ground-truth y using a cost function E(W , b;x,y). The network is optimized
(trained) by minimizing E(W , b;x,y) for all the training examples (x,y) in the
training set:

E(W , b) =
1

N

N∑
n=1

E(W , b;xn,yn) (2.9)

with N being the number of training examples. Common cost functions are:
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• Sum of squared errors (SSE)

SSE(y, ŷ) =
N∑

n=1

(yn − ŷn)2 (2.10)

• Root mean squared error (RMSE)

RMSE(y, ŷ) =

√∑N
n=1(yn − ŷn)2

N
(2.11)

• Categorical cross entropy (CE)

CE(y, ŷ) = − 1

N

N∑
n=1

K∑
k=1

−y(k)
n log(ŷ(k)

n ) (2.12)

where K is the number of classes. For the case of binary CE with K = 2
follows:

CE(y, ŷ) = − 1

N

N∑
n=1

yn · log(ŷn) + (1− yn) · log(1− ŷn) (2.13)

CE is generally used as the loss function for training NNs for classification tasks.
CE has several properties that make it a suitable choice for the use as an error
function when training a NN. First of all, the function is always non-negative, that
is, CE > 0 (∀ ŷn,yn ∈ [0, 1]). The second advantage refers to the training process
using the backpropagation algorithm with gradient descent, which will be discussed
in the following paragraphs.

Gradient descent

The general idea of gradient descent is to follow the gradients on the surface of
a cost function for a weight configuration of a NN while iteratively correcting the
weights in the direction of the negative gradient slope, minimizing the cost function
E. This is possible for NNs as they are constructed of differentiable components,
which holds also true for the commonly used cost functions [18]. At the beginning
of the network construction, the weights W and biases b are initialized randomly.
Then, the derivatives of the cost function E with respect to all of the weights and
biases in the network are computed, i.e., ∂E

∂wl
ji

and ∂E
∂blji

, where wl
ji is the weight

connecting the ith neuron in layer l to the jth neuron in layer l + 1. The weights
and biases can now be updated using, e.g., stochastic gradient descent towards the
direction of the negative gradient:

∆wi(τ + 1) = −α ∂E
∂wi

(2.14)

wi(τ + 1) = wi(τ) + ∆wi(τ + 1), (2.15)
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where ∆wi(τ + 1) is the weight update, α is the learning rate that determines the
update step size and τ is the iteration variable. The same update rule also applies
to the biases bi.

Backpropagation

To simplify the description of the previously mentioned backpropagation algorithm,
the following notation is introduced: α′ is the first derivative of activation function
α, zlj is the weighted input to the jth neuron in layer l and hlj is the activation of
the jth neuron in layer l, i.e., hlj = α(zlj) and

zlj =
∑
i

wl
jih

l−1
i + blj. (2.16)

Backpropagation is a method used in ANNs to compute the error contributed by
every individual neuron in the network [18]. It is also called backpropagation of
errors, because the error is computed at the output layer neurons and propagated
back through the network.
Formally, the error δLj for each neuron j in the output layer (the output layer being
layer L) is computed as:

δLj =
∂E

∂zLj
=

∂E

∂hLj

∂hLj
∂zLj

=
∂E

∂hLj
α′(zLj ) (2.17)

Based on the errors δl+1
j , the backpropagated errors δlj in the previous layer l can

be computed:

δlj =
∂E

∂zlj
=

∑
i

∂E

∂zl+1
i

∂zl+1
i

∂zlj
=

∑
i

wl+1
ij δl+1

i α′(zlj), (2.18)

where the following relationships were used:

∂zl+1
j

∂zlj
=

∂

∂zlj

∑
i

wl+1
ij α(zlj) + bl+1

i =
∑
i

wl+1
ij α′(zlj), (2.19)

δl+1
i =

∂E

∂zl+1
i

. (2.20)

Now, by using the expression

∂zlj
∂wl

ji

=
∂

∂wl
ji

∑
i

wl
jih

l−1
i + blj = hl−1i (2.21)

and the definition of δlj, the gradients ∂E
∂wl

ji
as a function of the error δlj can be

expressed:

∂E

∂wl
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=
∂E

∂zlj

∂zlj
∂wl

ji

= hl−1i δlj (2.22)
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Analogously, the gradients ∂E
∂blj

of the cost function with respect to the bias terms
are:

∂E

∂blj
= δlj. (2.23)

Usually, variations of stochastic gradient descent (SGD) such as batch gradient
descent or mini-batch gradient descent are used, handling multiple input-output
pairs (xn,yn) at once. This effectively increases computation speed by exploiting
the fast matrix multiplication implementations available on graphics processing units
(GPUs) [24]. Besides the mentioned gradient descent variants, there exist further
optimization algorithms such as RMSprop [25], ADADELTA [26] and Adam [27].
The latter is used in the implementations of this work.

Adam The optimization algorithm Adam (derived from adaptive moment esti-
mation) was developed by Kingma et al. [27] and is an extension to stochastic
gradient descent (SGD) that is widely used for optimizing deep learning parameters
in computer vision and natural language processing. While SGD maintains a single
learning rate α for all weight updates without adaptation during training, Adam
employs an individual learning rate for each weight and separately adapts in train-
ing time from estimates of first and second moments of the gradients. The algorithm
is described in full detail by its authors in [27].

2.3 Deep Learning

Deep learning has achieved breakthroughs in a large range of real-world applications
in various domains thanks to the progress made in recent years. The success of deep
neural networks can be attributed to both technological and scientific advances. On
the one hand, training these networks with possibly millions of parameters in a
timely manner is made possible by using graphics processing units (GPUs) instead
of central processing units (CPUs). Fast and efficient matrix and vector multipli-
cations (common in neural networks) are the strengths of today’s powerful GPUs
when compared to CPUs [24]. On the other hand, there have also been theoretical
insights on the advantage of deep networks over shallow networks, considering that
both have an identical overall number of neurons in the hidden layers. The reason
for that is the exponential growth of the expressiveness of models with increasing
depth [28, 29]. Furthermore, rapid prototyping and implementation of new ideas
and architectures is enabled by novel software frameworks, such as Google’s Ten-
sorFlow [30], Theano [31], Microsoft’s CNTK [32], Facebook’s PyTorch [33], Keras
[34] or Caffe [35].
In contrast to deep learning, classic machine learning approaches for classification
tasks require the design of hand-crafted discriminative features which are fed to
a statistical classifier, such as linear discriminative analysis (LDA) [36] or support
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vector machine (SVM) [37]. The design of hand-crafted features, however, requires
in-depth knowledge of the problem domain and finding highly expressive features in
complex tasks such as computer vision or natural language processing is challeng-
ing. In addition to that, with a growing number of features the dimensionality of
the problem increases, which leads to the curse of dimensionality2.
With deep learning the way to approach complex problems has changed. The multi-
ple hidden layers allow the automatic discovery of complex features by hierarchically
learning abstract representations in the first few layers and more specific character-
istics in the following layers. The number of distinguishable features in deep archi-
tectures grows exponentially with the number of model parameters, while showing
good generalization capabilities, providing that sufficient labeled data is available
[29].
In the following, common deep learning models are explained, including feedforward
neural networks, convolutional neural networks and long short-term memory, which
are used in this thesis.

2.3.1 Feedforward Neural Networks

A feedforward neural network (FNN) is composed of fully-connected layers as previ-
ously described in section 2.2 for the most simple FNN, i.e., the multilayer perceptron
(MLP). Albeit its relatively simple structure, a MLP with only one hidden layer can
produce the characteristics of any smooth mathematical function with high preci-
sion, given that a sufficient amount of non-linear neurons are used in the hidden
layer, which is stated by the universal approximation theorem [39]. The problem is
that the required number of hidden layer neurons is a priori unknown. However,
MLPs with multiple hidden layers have shown satisfying performance in handwrit-
ten digit recognition [22] and speech recognition [40], to name a few examples.
A different type of FNN architecture is described in the following section: The
convolutional neural network.

2.3.2 Convolutional Neural Networks

The main component of a convolutional neural network (CNN) is the convolutional
layer. The idea behind convolutional layers assumes that a locally learned feature
for a given input (typically two-dimensional, e.g., images) should also be useful in
other regions of that same input, e.g., an edge detector that was found useful in
some part of an input image should also prove useful in other parts of the image
as a general feature extraction stage. The learning of features such as differently
oriented edges, curves or color blobs is attained by sliding, or more precisely, con-
volving, a set of filters over the input dimensions, which for image-like inputs would

2Having only a limited amount of training data, the predictive capabilities of the model are
reduced with increasing dimensionality, which is also known as Hughes phenomenon [38]. This
often results in poor generalization capabilities of the model for complex tasks.
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be width and height for example (see figure 2.7 for hierarchically learned filters in
subsequent layers in a facial recognition task). The filters cover the full depth of

First Layer Representation Second Layer Representation Third Layer Representation
Figure 2.7: Hierarchical representation of learned features in a CNN used for facial
recognition tasks. Illustration adapted from [41].

the input data, meaning that filters for colored images in RGB format need to cover
all three color channels in the depth dimension. The output of a single filter is a
two-dimensional activation at every covered spatial location.
A convolutional forward pass can be expressed as a single matrix-vector multiplica-
tion for optimization purposes:

y = W · x (2.24)

where the n-dimensional input matrix x and the convolutional filters are flattened
into vectors. The filters are arranged in column-wise order to form weight matrix
W . Tunable hyperparameters of CNNs include the number of filter kernels K, their
size F (e.g., filter dimensions are 2× 2 for F = 2), the stride indicating the spatial
shift while sliding the filter, and how to handle the regions at the border, i.e., type
and size of padding.
Typical CNN architectures are composed of consecutive convolutional layers, ReLU
or ELU activations, batch normalization layers, pooling layers, dropout layers, fully-
connected layers and a softmax activation in the output layer. A simple CNN
without dropout and batch normalization is illustrated in figure 2.8. Pooling layers
are described in the paragraph below. CNNs have achieved outstanding results,
surpassing human-level classification accuracies in the field of computer vision, e.g.,
on the 1000-class ImageNet competition [6].

Pooling layer

Pooling layers are commonly used in CNNs to down-sample the output of convolu-
tional layers by using a sliding filter (typicall mean or max-filter). For example, a
filter of size 2×2 and stride of 2 sub-samples an input by a factor of 2 in both height
and width, which is often applied in CNN architectures to combat overfitting and
improve translational invariance. Pooling layers have two hyperparameters, namely
filter size F and stride S.
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Convolution

Pooling

Convolution

Pooling

Fullyconnected Outputpredictions

Fullyconnected

dog (0.05)cat (0.90)rabbit (0.04)bird (0.01)

Figure 2.8: An example of a convolutional neural network used for image classifica-
tion tasks.

A FNN-based architecture such as a CNN, however, exhibits a few drawbacks when
processing sequential input data like audio, video or natural language, because the
input samples are processed independently from one another. Recurrent neural
networks (RNNs) which are described in the following section, are a more suitable
choice for sequential input data.

2.3.3 Vanilla Recurrent Neural Networks

For some applications such as natural language processing (NLP) or speech recog-
nition, important information is provided in the context of the input data due to its
sequential nature. As traditional FNN-based architectures are not well-suited for
handling sequential data, recurrent neural networks (RNNs) present a solution by
introducing feedback connections within layers. Over the past years, several types
of RNNs have been developed, such as Elman RNNs [42], long short-term memory
(LSTM) [43] and gated recurrent unit (GRU) [44] networks.

In general, for a sequence of input vectors {x1, . . . ,xT} a RNN computes a sequence
of hidden activations {h1, . . . ,hT} and output vectors {ŷ1, . . . , ŷT} for time steps
t ∈ [1, . . . , T ] as following:

ht = α1(W
xhxt + W hhht−1 + bh) (2.25)

ŷt = α2(W
hŷht + bŷ) (2.26)

where W ij denotes the weight matrices connecting layers i and j, bj are bias terms
and αi (with i ∈ {1, 2}) activation functions.
In a RNN with multiple stacked hidden layers, the hidden layers receive the acti-
vation of the previous hidden layers per timestep (see Figure 2.9). The addition of
feedback connections on layers enables a RNN to let information flow through the
time steps, whereby the hidden layers produce activations that act as memory in
the network. The hidden layers step by step build up an internal state through their
activation vectors ht. Hence, the output ŷt at time step t becomes a function of all
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Inputlayer

Hiddenlayer

Outputlayer

Hiddenlayer

Figure 2.9: Basic architecture of a recurrent neural network with two hidden layers.
Feedback connections are highlighted in red. Bias terms are omitted for clarity.

received inputs {x1, . . . ,xt} and hidden activations {h1, . . . ,ht} before the timestep
t. Based on those characteristics, RNNs are especially well-designed for processing
sequential data. The simple RNN described here is known as vanilla RNN.

Backpropagation through time

Backpropagation through time (BPTT) is an extension to the ordinary backprop-
agation algorithm (see Section 2.2 for details). The idea is to unroll a RNN in
time and then use backpropagation, treating the RNN as if it were a FNN. Fig-
ure 2.10 illustrates the equivalence of a RNN and its unrolled representation, which
is analogous to a FNN having a layer for each time step while sharing weights [45].

Inputlayer

Hiddenlayer

Outputlayer

Figure 2.10: Left-hand side: A recurrent neural network with a single hidden layer
with one single neuron. Right-hand side: The same network unrolled in time over
T timesteps.
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Vanishing and Exploding Gradients

One major difficulty with RNNs is the vanishing and exploding gradient problem
that can occur when training vanilla RNNs, which rendered RNNs unusable for
many use cases in its early years [46]. The reason for that problem is explained in
the following paragraph.

The cost function Et is computed up to timestep t based on outputs ŷt and labels
yt for a sequence where t ranges from 1 to T and E =

∑T
t=1Et is defined as the

cost function for the whole sequence. In contrast to backpropagation in FNNs,
the gradients for cost Et with respect to the weights W hh need to be propagated
multiple times through the same weight matrix W hh, because output ŷt depends
on hidden state activations ht, which themselves depend on all previous hidden
state activations h1, h2, . . ., ht. The gradients thereby become smaller and smaller
(vanishing gradients) or larger and larger (exploding gradients) according to the
chain rule in backpropagation, which makes efficient training unfeasible for a larger
number of timesteps. In general, vanishing or exploding gradients can occur in any
type of deep neural network, but RNNs are particularly prone to that problem due
to unrolling the network for BPTT, which effectively results in particularly deep
NNs.
While exploding gradients can be attenuated by clipping gradients whose norms
surpass a certain threshold [47], vanishing gradients are a more challenging problem
to solve. However, several methods have been developed to overcome the limitations
of vanilla RNN, e.g., novel neural network architectures such as the long short-term
memory, which will be explained in the following section.

2.3.4 Long Short-Term Memory Networks

To address the vanishing gradient problem in vanilla RNN, Hochreiter et al. pro-
posed the long short-term memory (LSTM) network in 1997 [43] by replacing the
simple neurons with LSTM units (also called memory cells).

LSTM memory cell

A memory cell consists of four main components: an input gate, a neuron with a
self-recurrent connection, a forget gate and an output gate (see the illustration of
a LSTM cell in Figure 2.11). The self-recurrent connection with a weight of 1.0
bars outside interference and thus makes sure that the state of a memory cell may
remain constant from one timestep to another (represented by the top straight line
denoted Ct in Figure 2.11). The gates regulate addition and removal of information
to/from the memory cell. They are composed of layers using either sigmoid or tanh
activations. The input gate decides whether the state of the memory cell should be
altered by the input signal or not. The output gate on the other hand decides if the
memory cell state should have an effect on the output (and therefore on following
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LSTM neurons). Eventually, the forget gate regulates the memory cell’s ability to
remember or forget its previous cell state through its self-recurrent connection [48].

Figure 2.11: Long short-term memory cell. Illustration adapted from [48].

The hidden activation ht in a LSTM layer is computed by the following set of
equations:

it = σ(W xixt + W hiht−1 + bi) (2.27)

ft = σ(W xfxt + W hfht−1 + bf ) (2.28)

ct = ft ◦ ct−1 + it ◦ tanh(W xcxt + W hcht−1 + bc) (2.29)

ot = σ(W xoxt + W hoht−1 + bo) (2.30)

ht = ot ◦ tanh(ct) (2.31)

where it denotes the input gate, ft the forget gate, ct the cell state, ot the output
gate, σ(.) the sigmoid activation function, W ij the weight matrices and bj the bias
terms. The operator ” ◦ ” denotes element-wise multiplication.

The forget gate was added to the original LSTM architecture in 1999 by Gers et al.
[49]. This extended LSTM version is widely used today, which is one of the reasons
it was also chosen to be used in this thesis.
The vanishing gradient problem is mitigated by the self-recurrent connection Ct

of the cell with a weight of 1.0, which keeps the gradients from being scaled mul-
tiple times and thus avoids previously described problems of vanilla RNNs (see
Section 2.3.3).
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2.3.5 Tuning Deep Neural Networks

There are several techniques that can help to improve classification accuracy or
generalization capabilities of a deep learning model. In the following paragraphs a
few commonly used methods will be briefly described.

Batch normalization Batch normalization is typically applied to normalize in-
termediate representations between layers, which has been shown to improve gener-
alization and accuracy, especially for CNNs [50].

Dropout Dropout layers combat overfitting by randomly disabling a certain per-
centage of neurons in a layer. This effectively makes sure that a network learns
generalized features rather than relying on individual neural connections. Dropout
is only used during the training phase and turned off for validation and test [51].

Regularization Regulizers pursue the same goal as dropout (reduce overfitting)
by penalizing weights. Specifically, L2 regularization introduces a term λ

∑
iw

2
i to

the cost function, where λ is a factor controlling the regularization strengths, which
effectively punishes the overuse of weights in a network [52].

Data augmentation As the performance of deep learning methods heavily relies
on large amounts of data, using more data likely improves the deep learning model.
Data augmentation aims to artificially produce more training data from available
data. For the case of image data, it is for example possible to rotate, scale or flip the
images without changing the meaning. By feeding augmented data to the network,
the network learns some degree of invariance to this type of image transformations
[6].

Cross validation When training a machine learning model, a method to choose
between different models is needed. A common metric for the model’s performance
is to measure its accuracy on unseen data. For small amounts of data, however,
there can be a rather big variability in the validation set. Therefore, k-fold cross-
validation is commonly used. For k = 10 a dataset is split into 10 equally sized
subsets. One of the subsets is used for validation, while the remaining 9 subsets
are used for training, which is done iteratively until every subset was once used for
validation. The validation accuracies are then averaged, resulting in a representative
measure of the models performance.
For deep learning, however, it is normally avoided to use cross-validation because
of the cost associated with training k different models on large amounts of data.
Instead of using cross-validation, it is common practice to choose random subsets
of the data for training, validation and testing (usually 70% / 15% / 15%). The
model is trained until the minimum of the validation loss (see also early stopping,
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explained in [52]) is found and then tested on the test data split, measuring the
generalization capabilities of the model.

2.4 Related Work

This section presents an overview of related work in the field of BCI research. First,
the state of the art of EEG decoding methods is described. Then, novel EEG
decoding approaches based on deep learning are reviewed.

Traditional Machine Learning Approaches

During the past two decades, significant improvement in performance of motor
imagery-based BCIs has been achieved and various approaches for decoding EEG
signals have been investigated. Most of the decoding methods are based on tradi-
tional machine learning algorithms, such as support vector machines (SVM) [2, 53]
and linear discriminant analysis (LDA) [54, 53, 55]. For instance, Yong et al. pre-
sented in their work the classification of three classes of motor imagery EEG data
within the same limb [2]. The three motor imagery tasks involved imaginary grasp
and elbow movements, and a rest state. Best results were achieved using SVM
on relative event-related desynchronziation/resynchronization (ERD/ERS) features
(cf. Section 2.1.1). An accuracy of 66.9% was achieved for binary classification
(grasp vs. elbow movements). The accuracy dropped to 60.7% when using the rest
state as the third class.

Yang et al. implemented an filter bank common spatial pattern (FBCSP) approach
that generates EEG features in various frequency ranges [56]. They tested the
FBCSP approach on BCI competition IIa dataset with 9 subjects on four motor
imagery classes (left-, right- and both-hand movements and rest). They achieved
a cross-validated accuracy of 67.01% (±16.20%), which is the state of the art for
four-class motor imagery classification using statistical machine learning methods.

Deep Learning Approaches

Stagnating decoding accuracies in both offline and online setups have led the way to
novel approaches, such as deep learning. Considering that neural activity measured
by EEG can be regarded as highly dynamic, non-linear time series data, recurrent
neural networks and particularly LSTM appear to be the tool of choice for model-
ing the temporal characteristics of brain activity. While LSTM-based models have
reached state-of-the-art performance in sequential data processing tasks such as
natural language processing, CNNs excel in computer vision and speech recognition
tasks. This raises the question whether those architectures are suitable for EEG
decoding purposes.
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Lawhern et al. developed and investigated the use of a generic CNN model called
EEGNet that classifies EEG signals for different BCI tasks, such as P300 visual-
evoked potentials (P300), error-related negativity responses (ERN), movement-related
cortical potentials (MRCP), and sensory motor rhythms (SMR, see Section 2.1.1 for
details) [8]. Although the CNN architecture was not designed to excel on a single
task, EEGNet performs comparable to FBCSP. However, the results vary largely
across different subjects and the authors do not provide detailed numeric results,
but only show the relative performance. Their main finding is that a simple CNN
architecture can provide robust performance across different BCI tasks.

Stober et al. introduced and compared methods for learning expressive features
with deep learning techniques [57]. They addressed the problem of limited EEG
data availability by training convolutional auto-encoders on cross-trial encoded EEG
data, which helped to find stable features that are present in all trials. The dataset
used for measuring their model’s performance was the OpenMIIR dataset, which
consists of EEG recordings from participants listening to music.

Alex Greaves implemented a RNN and a fully-connected NN to classify EEG that
was recorded when participants where viewing either 2D or 3D stimuli [58]. Even
though RNNs are designed to process sequential data (such as EEG), the imple-
mented RNN model showed unsatisfying performance and was outperformed by a
regular FNN that reached an accuracy of 72% on the binary classification task.

Bashivan et al. developed a recurrent-convolutional neural network inspired by
video classification techniques [59]. They transformed EEG time-series data to a
sequence of electrode-location preserving EEG images. The model was evaluated
on a mental load classification task that elicited event-related potentials (ERP) in
the EEG recordings. A test error of 8.89% was reached on the four-class problem.
However, as ERP tasks are relatively easy to classify compared to motor imagery
tasks, the significance of the results for an active BCI is disputable. Furthermore,
the transformation of EEG channels to multiple topology-preserving EEG images is
computationally expensive and therefore not suitable for real-time applications.

Schirrmeister et al. investigated the design choices of CNN architectures for decoding
motor imagery movements from raw EEG data [60]. Two models were presented in
their work, that is, a deep and a shallow CNN model. By including recent advances
from the field of deep learning, such as batch normalization and exponential linear
unit activations, the authors obtained accuracies of 71.90% and 70.10% on BCI
dataset IVa for deep and shallow CNN models, respectively. As this work was
published towards the end of this thesis project, it did not influence the design
choices for proposed CNN and LSTM models described in later sections of this
thesis. However, both the deep and shallow CNN models have been implemented
in this work for benchmarking purposes. Their architectures are explained in the
following paragraphs.
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Deep Convolutional Neural Network The deep CNN model developed by
Schirrmeister et al. [60] was inspired by successful ImageNet competition contenders,
such as AlexNet [6]. The model consists of four convolutional-max-pooling blocks,
whereas the first block is specifically designed for handling EEG data. The output
layer is a standard dense softmax classification layer. The first convolutional block
was split in two because EEG is often recorded using many electrodes (i.e., chan-
nels), compared to only three channels in RGB images. The filters of the first layer
learn temporal convolution kernels, while filters in the second layer operate spatially
in 2D across the learned temporal filters. Because no activation function is applied
between the first two layers, they could in general be combined into a single layer.
However, splitting the operations between two layers enhanced the model’s perfor-
mance [60]. For the subsequent convolutional blocks the ELU activation function
was used. Table 2.1 shows the implementation of the deep CNN model for three
EEG channels as it was implemented in this thesis for benchmarking purposes.

Shallow Convolutional Neural Network The shallow CNN architecture de-
veloped by Schirrmeister et al. [60] was inspired by the FBCSP decoding pipeline,
which is especially useful for decoding band power features. The first two layers of
the shallow CNN model perform temporal and spatial convolutions as in the deep
CNN model, which is similar to the subsequent bandpass and spatial filter stages in
FBCSP. However, the filter kernels of the temporal convolution layer are larger than
in the deep CNN model (25× 1 vs. 10× 1). Following the first two layers, a squar-
ing activation function, a mean pooling layer and a logarithmic activation function
are applied. Those operations are analogous to trial log-variance computations in
FBCSP (see the original work for details [60]). Table 2.2 shows the implementation
of the shallow CNN model for three EEG channels as it was implemented in this
thesis for benchmarking purposes.
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Layer Input Operation Output Parameters

1 E × T 25× Conv2D (1× 10) E × 1015× 25 275

2 E × 1015× 25 Reshape E × 1015× 25× 1 -
E × 1015× 25× 1 25× Conv3d (3× 1× 25) 1× 1015× 1× 25 1,900
1× 1015× 1× 25 BatchNorm 1× 1015× 1× 25 100
1× 1015× 1× 25 ELU 1× 1015× 1× 25 -
1× 1015× 1× 25 MaxPool2D (3× 1) 338× 25× 1 -

338× 25× 1 Dropout (0.5) 338× 25× 1 -

3 338× 25× 1 50× Conv2D (10× 25) 329× 1× 50 12,550
329× 1× 50 BatchNorm 329× 1× 50 200
329× 1× 50 ELU 329× 1× 50 -
329× 1× 50 MaxPool2D (3× 1) 109× 1× 50 -
109× 1× 50 Dropout (0.5) 109× 1× 50 -

4 109× 1× 50 Reshape 109× 50× 1 -
109× 50× 1 100× Conv2D (10× 50) 100× 1× 100 50,100
100× 1× 100 BatchNorm 100× 1× 100 400
100× 1× 100 ELU 100× 1× 100 -
100× 1× 100 MaxPool2D 33× 1× 100 -
33× 1× 100 Dropout (0.5) 33× 1× 100 -

5 33× 1× 100 Reshape 33× 100× 1 -
33× 100× 1 200× Conv2D (10× 100) 24× 1× 200 200,200
24× 1× 200 BatchNorm 24× 1× 200 800
24× 1× 200 ELU 24× 1× 200 -
24× 1× 200 MaxPool2D (3× 1) 8× 1× 200 -

6 8× 1× 200 Flatten 1600 -
1600 Softmax K 3,202

Total 268, 977

Table 2.1: Deep CNN architecture as proposed by Schirrmeister et al. [60] (re-
implemented in this work), where E is the number of channels, T is the number of
timesteps and K is the number of classes. Input and Output sizes are shown for
cropped training with E = 3 (electrodes C3, C4 and Cz) and T = 1024 for window
size of 4 seconds; binary classification with two classes for K = 2.
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Layer Input Operation Output Parameters

1 E × T 40× Conv2D (1× 25) E × 1000× 40 1,040
E × 1000× 40 Dropout (0.5) E × 1000× 40 -

2 E × 1000× 40 Reshape E × 1000× 40× 1 -
E × 1000× 40× 1 40× Conv3D (3× 1× 40) 1× 1000× 1× 40 4,840
1× 1000× 1× 40 BatchNorm 1× 1000× 1× 40 160
1× 1000× 1× 40 x2-Activation 1× 1000× 1× 40 -
1× 1000× 1× 40 Dropout (0.5) 1× 1000× 1× 40 -

3 1× 1000× 1× 40 Reshape 1000× 40× 1 -
1000× 40× 1 AvgPool2d (75× 1) 62× 40× 1 -
62× 40× 1 log(x)-Activation 62× 40× 1 -

4 62× 40× 1 Flatten 2480 -
6144 Softmax K 4,962

Total 10, 922

Table 2.2: Shallow CNN architecture by Schirrmeister et al. [60] (re-implemented
in this work), where E is the number of channels, T is the number of timesteps and
K is the number of classes. Input and Output sizes are shown for cropped training
with E = 3 (electrodes C3, C4 and Cz) and T = 1024 for window size of 4 seconds;
binary classification with two classes for K = 2.
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Chapter 3

Methods

This chapter first explains the general experimental design for brain-signal decoding
using deep learning and the datasets used in this work. The second part explains
proposed LSTM- and CNN-based architectures and their implementations. Finally,
performance of the models is evaluated in the last section.

3.1 Experimental Design

This work aims to further investigate the potential of deep learning methods to
classify binary motor imagery movements in EEG signals. Investigated approaches
include the long short-term memory (LSTM) recurrent networks as well as convolu-
tional neural networks (CNNs) described in Sections 2.3.4 and 2.3.2, respectively. In
the following, first, the data used in this study is described. Then, in the subsequent
section design choices and implementations for both LSTM and CNN networks are
explained.

3.1.1 Data

Since deep learning models often consist of hundreds of thousands of tunable param-
eters, a huge amount of data is needed to be able to accurately optimize the models
and achieve good performance. For this reason, and since none of the publicly avail-
able EEG datasets offer enough data samples for multiple subjects, we decided to
record our own data. This dataset is referred to as NST data afterwards. As NST
data is not yet available to the public, the Graz data set B [13] is additionally used
to validate our results and rule out any possible bias. The Graz dataset B recording
paradigm is explained in Section 2.1.2.

NST Recording paradigm

This data set was acquired over the course of the duration of this thesis at the Assis-
tant Professorship for Neuroscientific System Theory (NST) at Technical University
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of Munich following a recording protocol by Zied Tayeb. The data set consists of
EEG data from 20 healthy subjects with normal or corrected-to-normal vision. The
participants were PhD students, master students, student research assistants or vol-
unteers. During the experiment the participants were sitting in an armchair located
1 meter away from the flat screen they needed to watch. Each subject underwent four
recording sessions, whereby the first three contain training data without feedback,
and the fourth contains data with random on-screen feedback. Each session consists
of 72 trials, 24 for each class (left hand, right hand and both hand movements),
which makes 216 trials per subject without feedback in total. The participants
were instructed to imagine familiar movements that they could imagine best, such
as squeezing a ball, lifting a water bottle, or passively moving their arm sideways.
Each trial has a duration of 10 seconds and after each session the participants were
asked to take a 10 minute break. At the beginning of a trial (t = 0s) the screen is
black. At t = 3s a green fixation dot is displayed to alert the subject. At t = 4s a
visual cue in form of a red arrow pointing either to the right or the left-hand side or
both is displayed on the screen. At t = 4.5 s a short acoustic signal (1 KHz, 500 ms)
is played, signaling to the subject to start performing motor imagery and closing
his/her eyes. At t = 8.5s the acoustic signal is played again, instructing the subject
to open his/her eyes and relax. Up until t = 10s there is a pause after which the trial
has finished (see Figure 3.1 for illustration). No movement execution is requested
and the subjects are instructed to keep their hands fully supported on the arm
chair in resting position. The type of cue (left, right, or both) is selected randomly.
However, at the end of a session the same number of trials was recorded for each
class. Figure 3.2 shows the recording setup at NST for better understanding. The

10 2 3 4 5 6 7 8 9 10 t in s
Fixation dot PauseCue displayMotor imagery Pause

Imaginationof left handmovement
Imaginationof right handmovement

Figure 3.1: Illustration of the NST recording paradigm for motor imagery EEG data
acquisition.

recordings were performed using a g.USBamp amplifier (g.tec medical engineering
GmbH, Austria) on electrodes C3, C4 and Cz. The reference electrode was placed
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on the right earlobe and ground was on electrode AFz. The sampling frequency was
set to 256 Hz; the power line frequency in Germany is at 50 Hz. Recorded data was
saved as is without any filtering.
Note that in this thesis only the first three sessions without feedback are used.

Figure 3.2: EEG recording setup at NST.

3.2 Implementation

This section explains the implementation of proposed models for decoding imagery
movements from EEG data. The characteristics of this classification problem sup-
port the assumption that deep neural networks are an exceptionally promising ap-
proach for decoding EEG data. First, it is challenging to design discriminative
features from scratch because there is a high variability between samples. Second,
even though the potential of collecting large amounts of data is limited, there are
efficient methods for data augmentation (see Section 3.2.2). This work approaches
the classification problem with two different types of deep neural networks: LSTM
networks and CNN. While the latter has been very recently evaluated on motor im-
agery data [60] and to a certain degree on other types of EEG signals (event-related
potential, visually-evoked potentials etc.), the former has not yet been evaluated for
its use in classifying EEG signals.

In the first part, preprocessing and augmentation of the data are described, which
is identical for all proposed deep learning approaches. In the subsequent parts, first
the proposed LSTM and then the proposed CNN model are explained.

3.2.1 Signal Preprocessing

Raw EEG signals naturally have a low signal-to-noise ratio and suffer from interfer-
ence from various noise sources, such as power line noise, electromyography (EMG)
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and electrooculography (EOG) artifacts from surrounding muscle and eye move-
ments, and also bad electrode placement on the scalp. It is therefore a common
practice to filter EEG data prior to any further feature extraction or classification
steps. The following preprocessing stages were implemented in Python using NumPy

and SciPy.Signal libraries.

1. Notch filter
In order to eliminate power line noise, a notch (or band stop) filter was applied
in the frequency range of 50 Hz with a quality factor of Q = 30.

2. High pass filter
Over the course of the recording session the impedance between electrodes
and scalp slowly changes due to minor movements of skin against electrodes
and gel. This results in a slow baseline drift in the EEG data, which can be
removed by either using statistical detrending methods or by simply applying
a high pass filter to the data. Here, the data was high pass filtered with a
cutoff frequency of 0.5 Hz to remove baseline drift.

3. Band pass filter
Signal characteristics that are typical for motor imagery are usually found
in the frequency ranges of α- and β-rhythms (8 − 13 Hz and 13 − 30 Hz,
respectively). Interfering EMG and EOG signals are usually found in higher
frequency ranges. Therefore, a band pass filter is applied to the EEG data.
However, for deep learning methods it is desired to perform a minimum of
signal preprocessing because unknown features in other frequency bands might
be found. In this work a passband from 2 to 60 Hz in a digital zero-phase
Butterworth filter of order 5 is used.

4. Six-sigma clipping
Unintentional movement during a recording session can lead to high voltage
spikes in the recorded data. Normalization of data with such outliers leads to
very small values for most data samples, which over-emphasizes the importance
of the outliers compared to the rest of the data samples. To overcome this
problem, sample values that exceed ±6σ(xi) were set to ±6σ(xi), rectifying
outliers, where σ denotes the standard deviation for the EEG data of channel
i.

5. Normalization
After filtering and clipping, the EEG signals are normalized. For each session
and electrode i the mean µ(xi) of the signal is subtracted from every time
measurement sample xi(t) and the result is divided by the standard deviation
σ(xi) as shown in equation 3.1 below:

x∗i (t) =
xi(t)− µ(xi)

σ(xi)
(3.1)
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3.2.2 Data Augmentation

Small data sets limit the ability of deep learning models to learn discriminative
features and lead to overfitting. In other domains such as computer vision, data
augmentation is common practice to enlarge the dataset. While methods such as
stretching, compressing, rotating or flipping works well for image-like data, it is
unsuitable for time-series data like EEG. Crops generated by sliding a fixed-size
window over each EEG trial, however, has been shown to efficiently increase the
amount of training examples, leading to a better performance of CNN models [60].

In this work, the crops are created using a sliding window with the length of 1024
timesteps, i.e., 4 seconds given the sampling frequency of 256 Hz. The sliding window
shifts by n timesteps to create next crop until the end of the trial. Formally, given
an original trial Xj ∈ RE·T with E electrodes and T timesteps, the sliding window
generates crops Cj with size T ′ as slices of the original trial as follows:

Cj =
{
Xj

[1,E],[t,t+T ′]|t ∈ [1, T − T ′]
}

(3.2)

where j is the trial index.

This cropping strategy forces the deep learning model to learn discriminative features
that are present in all crops of the trial because the model can no longer rely on
the global structural differences between the original trials. Each crop receives the
same label yk as the original trial. Choosing a small value for the shift parameter
n low leads to aggressive cropping, which in turn yields more but higher correlated
new training examples. A shifting parameter of n = fs/8 = 32 (i.e., 125 ms) yielded
the best results regarding model performance in terms of accuracy. The crops were
collected starting 3 seconds prior to motor imagery onset until the end of the trial,
which guarantees that a minimum of 1 second motor imagery is present within
the crop. In total, this cropping strategy yields 25 new examples per trial, that
is, cropped training increases the training set by a factor of 25. In addition, as
the sliding window is smaller than the trial, the input to the deep learning model
is also smaller (2560 timesteps vs. 1024 timesteps for original and cropped trials,
respectively).

3.2.3 Long Short-Term Memory Model

Given that neural activity measured by EEG can be regarded as highly dynamic,
non-linear time series data, recurrent neural networks and particularly LSTM appear
to be the tool of choice for modeling the temporal characteristics of brain activity.
To assess the model’s capability of learning discriminative features without prior
manual feature-engineering, raw EEG timeseries with only minimal preprocessing
(as explained in Section 3.2.1) is fed into the LSTM model.

The architecture of the proposed LSTM model is described in the following section.
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Architecture

In this work, LSTM models with up to three LSTM layers consisting of 32 to 256
LSTM memory cells were regarded. Since it is not possible to know the best model
architecture a priori, different configurations were trained and monitored on the
validation set. The configuration performing best on the validation set was then
evaluated on the test set. The best results have been achieved with a single layer
and 128 LSTM memory cells, which is consistent with results obtained by Bashivan
et al. who classified ERP signals [59]. More layers and a larger number of LSTM
memory cells improved training accuracy, but led to strong overfitting and a perfor-
mance decrease on the validation sets. Less than 128 memory cells led to underfit-
ting, which was noticeable by a decrease in both training and validation accuracies.
Downsampling the EEG data by a factor of two helped increase the performance of
the model, as RNN models generally benefit from shorter time sequences.

The model is implemented as a many-to-one approach, i.e., only the prediction
made by the LSTM after processing the whole sequence is propagated to the output
layer. The output layer uses a softmax activation using one neuron per class. The
continuous outputs of the softmax function are thresholded to obtain binary output
predictions per training example.
The high number of parameters in the model make it prone to overfitting. To counter
this problem, a dropout layer with a deactivation rate of 0.05 between output and
LSTM layer has proven helpful. Recurrent dropouts, i.e., random deactivations of
recurrent connections between timesteps drastically decrease the models learning
ability and are therefore not recommended.

The LSTM model is recapitulated in Table 3.1.

Layer Input Operation Output # Parameters

1 (T/2)× E LSTM (128 hidden units) 128 67,584
128 Dropout (0.05) 128 -

2 128 Softmax K 258

Total 67, 842

Table 3.1: Proposed LSTM architecture. E is the number of channels, T is the
number of timesteps and K is the number of classes. Input and Output sizes are
shown for cropped training with E = 3 (electrodes C3, C4 and Cz) and T = 1024
for window size of 4 seconds; binary classification with two classes for K = 2.

Training

The model was estimated using the fast and efficient Adam optimizer, a mini-batch
gradient descent variant described in Section 2.2 with categorical cross-entropy (CE)
as the loss-function (cf. Section 2.2). Optimizer parameters were set to a learning
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rate of 10−3 and decay rates of first and second moments of 0.9 and 0.999, respec-
tively (as recommended by the creators of Adam in their paper [27]). In order to
speed up the training, the model was trained on the largest possible mini-batch sizes
of 256 training examples, which is limited by the GPU video memory. Batch-wise
updating of the parameters also makes the gradients less noisy and allows paral-
lelization of computations on the GPU. The model was trained on a NVIDIA GTX
Titan X GPU, with CUDA 8.0 and cuDNN v5, using Theano 0.9 [31] and Keras
2.0.5 API [34].

For each individual subject, training has been conducted using a stratified 5-fold
cross-validation. More precisely, one of the five folds was held back for testing while
the four remaining folds were used for training and validation with a split of 90
% and 10 %, respectively, in a loop until each fold has once been used for testing.
Stratified in this context means that both classes are represented equally in each
fold.
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Figure 3.3: LSTM model optimization: Training and validation loss for all cross-
validation folds for a single subject. Thick blue and green lines represent the average
over all folds for training and validation, respectively.

Figures 3.3 and 3.4 visualize loss and accuracies over all cross-validation folds during
training. A well-known pattern of overfitting is visible. Given that validation loss
could not be further decreased using dropout or L2 regularization, another measure
has been taken to counter overfitting: During the 100 training epochs validation loss
was monitored as a metric for the model performance. Whenever an improvement
in the validation loss was noticed a function was called back and a checkpoint of
the model was created. At the end of training, the best model having the lowest
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validation loss was restored and evaluated on the test set. The results are presented
in a separate section in a later part of this thesis.
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Figure 3.4: LSTM model optimization: Training and validation accuracies for all
cross-validation folds for a single subject. Thick blue and green lines represent the
average over all folds for training and validation, respectively.

Albeit its suitability for processing time series data, the proposed LSTM model
did not perform as well as expected in classifying motor imagery EEG data. A
reason for this might be the limited amount of data which rendered the use of more
complex LSTM models with either more layers, more LSTM memory cells (or both)
impractical. Therefore, another deep learning architecture has been evaluated and
will be described in the following section.

3.2.4 Convolutional Neural Network Model

To date, convolutional neural networks are at the forefront of the most successful
deep learning architectures when it comes to working with image-like data. This is
mainly due to their ability to learn robust representations that are invariant against
partial spatial translation or deformation. In the BCI community, some research on
the use of CNNs on EEG data has already been conducted (cf. Bashivan et al. [59],
Lawhern et al. [8], and more recently Schirrmeister et al. [60]), but most of the
studies either attempt to use raw EEG data or classify other types of EEG signals,
such as ERP or ERN.
This work aims to mimic the use of CNNs in computer vision by providing image-
like data to the model in the form of spectrograms, which is a popular visualization
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technique in audio signal processing. In the following sections, first the computation
of spectrograms for EEG data is described and then the proposed architecture of
the CNN model is explained.

Time-Frequency Representation of EEG data

One important constraint when transforming EEG data to an image-like representa-
tion is to retain both the time and the frequency information in the image. The most
common method to achieve that in audio signal processing is the short-time Fourier
transform (STFT). The signal is first cropped into short, overlapping time-windows.
Then, a fast Fourier transform (FFT) is computed for each crop, assuming stationar-
ity in short time-frames. The time-wise concatenation of the frequency components
is also known as spectrogram, which represents the signal in both time and frequency.
Figure 3.5 shows spectrograms of electrode channel C3 for both motor imagery
classes, that is, left and right hand movements.
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Figure 3.5: Spectrograms of electrode C3 of both classes for subject S4. Notice how
especially the upper γ-band in the range between 25 to 40 Hz is visually different
from one another for a human viewer. Parameters were set to n = 1024 FFT
samples and a time shift of s = 16 time steps between STFT windows.

An important feature and a good sign of the potential use as an input to a CNN
model is the apparent visual difference between the classes for a human observer.
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In Figure 3.5, the most obvious differences are visible in the upper EEG frequency
bands between 25 and 50 Hz.
In the proposed CNN model architecture, the spectrograms are computed on-the-fly
using convolutional STFT kernels in a custom Keras layer on GPU with the library
Kapre (Keras audio preprocessors) [61]. The model architecture is described in the
subsequent section.

Architecture

The proposed CNN model is shown in Table 3.2 for EEG trials having E electrode
channels and T time samples.

Layer Input Operation Output # Parameters

1 E × T STFT 65× 64× E -
2 65× 64× E 24× Conv2D (12× 12) 65× 64× 24 10,392

65× 64× 24 BatchNorm 65× 64× 24 260
65× 64× 24 MaxPool2D (2× 2) 32× 32× 24 -
32× 32× 24 ReLU 32× 32× 24 -
32× 32× 24 Dropout (0.5) 32× 32× 24 -

2 32× 32× 24 48× Conv2D (8× 8) 32× 32× 48 73,776
32× 32× 48 BatchNorm 32× 32× 48 128
32× 32× 48 MaxPool2D (2× 2) 16× 16× 48 -
16× 16× 48 ReLU 16× 16× 48 -
16× 16× 48 Dropout (0.5) 16× 16× 48 -

3 16× 16× 48 96× Conv2D (4× 4) 16× 16× 96 73,824
16× 16× 96 BatchNorm 16× 16× 96 64
16× 16× 96 MaxPool2D (2× 2) 8× 8× 96 -
8× 8× 96 ReLU 8× 8× 96 -
8× 8× 96 Dropout (0.5) 8× 8× 96 -

4 8× 8× 96 Flatten 6144 -
6144 Softmax K 12,290

Total 170, 734

Table 3.2: Proposed CNN architecture. E is the number of channels, T is the
number of timesteps and K is the number of classes. Input and Output sizes are
shown for cropped training with E = 3 (electrodes C3, C4 and Cz) and T = 1024
for window size of 4 seconds; binary classification with two classes for K = 2.

The network architecture is inspired by CNNs used in ImageNet competition, such as
VGGNet [62] and AlexNet [6]. It uses stacked convolutional layers with decreasing
size and increasing number of filter kernels in deeper layers. After each convolutional
layer, batch normalization is applied to reduce covariate shift in intermediate repre-
sentations and improve robustness [50]. Then, max-pooling is performed, effectively



3.2. IMPLEMENTATION 41

downsampling the output from the previous layer by a factor of two in the first
two dimensions. A ReLU non-linearity is then applied, followed by a dropout with
deactivation probability 0.5. The ensemble of convolutional layer, batch normaliza-
tion, max-pooling, ReLU activation and dropout is repeated three times. Finally,
the output of the last convolutional ensemble is flattened and fully-connected to a
layer consisting of K neurons with softmax activation, where K is the number of
classes. The input to the CNN model is raw EEG data with minimal preprocessing
as described in Section 3.2.1. The actual spectrogram representation of the signal
is computed in the first layer of the model, which is a custom Keras layer created
by Keunwoo Choi [61]. The layer uses convolutional STFT kernels to compute the
spectrogram representation for each of the EEG channels, stacking each of the spec-
trograms on top of each other. This approach keeps preprocessing to a minimum
while exploiting the capabilities of parallelized GPU computation.

As with the LSTM model, other CNN configurations using different kernel sizes and
numbers, the amount of stacked convolutional layers and the use of other dropout
ratios have been tested. As there is a large number of tunable hyperparameters, a
grid-search over all possibilities is extremely time-consuming. Therefore a random
search has been performed, leading to the configuration shown in Table 3.2.

Training

The model was trained using the same training procedure as described for the LSTM
model in Section 3.2.3.
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Figure 3.6: Spectrogram-based CNN model optimization: Training and validation
accuracy for all cross-validation folds for a single subject. Thick blue and green lines
represent the average over all folds for training and validation, respectively.
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Figure 3.7: Spectrogram-based CNN model optimization: Training and validation
loss for all cross-validation folds for a single subject. Thick blue and green lines
represent the average over all folds for training and validation, respectively.

Figures 3.6 and 3.7 visualize accuracy and loss over all cross-validation folds during
training for a single subject. It is noticeable that the CNN model converges with less
fluctuations in both loss and accuracy when compared to the LSTM model. As with
the LSTM model, overfitting is also an issue. In addition to dropout, the validation
loss as a metric for the model performance is monitored over 100 training epochs.
Whenever an improvement in the validation loss was noticed a function was called
back and a checkpoint of the model was created. At the end of training, the best
model having the lowest validation loss was restored and evaluated on the test set.
The results are presented in Section 3.3.

3.3 Results

This section shows the results obtained with the proposed LSTM and CNN models
for 20 subjects from the NST dataset. As a validation baseline, an additional subject
from the Graz B1 dataset has been included. Furthermore, shallow and deep CNN
models that were recently published (see Section 2.4) have been reimplemented and
evaluated on both NST and Graz data. A discussion of the results is presented in
Chapter 4.

Accuracy was used to evaluate the model’s performance. For each individual subject,
training and testing have been conducted using a stratified 5-fold cross-validation.
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Test sets of all subjects were chosen to be identical for each model to ensure com-
parability. The test results over all cross-validation folds are presented in the form
of boxplots for all models: The bottom and top of the box are the first and third
quartiles, and the band inside the box is the second quartile (the median). The
whiskers represent minimum and maximum. Any data point not included between
the whiskers is plotted with a dot, representing outliers.

3.3.1 Proposed Long Short-Term Memory Model

Figure 3.8 presents the results obtained with the proposed LSTM model.
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Figure 3.8: Boxplot showing within-subject accuracies for the proposed LSTM model
trained on augmented data with 5-fold cross-validation.

The overall mean accuracy over all subjects is 66.20 % (±7.21%), which is well above
the chance level for binary classification. For the best performing subject S3, the
mean accuracy reached 86.97% (±5.18%). In contrast to that, for many subjects
the obtained accuracies were only slightly higher than the chance level (below 60%
for S6, S16, S17, S18 and S20). Graz B1 also performed not significantly above
chance level with an accuracy of 52.68 %. Overall, the LSTM model performs
comparable to state-of-the-art models using classical machine learning classifiers,
such as support vector machines (66.9 % in [2]) in terms of accuracy. However, it
is very unstable across the test splits, which is shown by the large variance in the
accuracy for within-subject test splits.
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3.3.2 Proposed Convolutional Neural Network Model

Figure 3.9 presents the results obtained with the proposed CNN model.
The overall mean accuracy over all subjects is 84.24% (±14.69%). The standard
deviation (SD) in the mean accuracy between subjects can be mainly attributed to
the inability of the proposed CNN model to classify data from subjects S5, S10 and
19, which reached accuracies close to the chance level, with a minimum as low as
50.08% for subject S19. In general, the CNN model is very stable across test splits
with an average SD of 3.32% across all subjects, with S6 being an exception (SD of
15.13%).
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Figure 3.9: Boxplot showing within-subject accuracies for the proposed CNN model
trained on augmented data with 5-fold cross-validation.

3.3.3 State-of-the-Art CNN Models

The following two sections present the results achieved with two CNN models re-
cently published by Schirrmeister et al. [60]. They were reimplemented and tested in
this work under the same conditions as the proposed models in the previous sections
(see Section 2.3.2 for details on model architecture).

Shallow Convolutional Neural Network Model

Figure 3.10 presents the results obtained with the shallow CNN model.
The overall accuracy over all subjects is 66.97 (±6.45%), which is slightly worse
than the results achieved by its authors (71.9% in [60]). For the best performing
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subject S17, the mean accuracy reached 78.89% (±7.77%). As for the proposed
LSTM model, some subjects reached mean accuracies only slightly above chance
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Figure 3.10: Boxplot showing within-subject accuracies for the Shallow CNN model
on augmented data with 5-fold cross-validation.
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Figure 3.11: Boxplot showing within-subject accuracies for the Deep CNN model
on augmented data with 5-fold cross-validation.
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level (below 60% for S4, S6 and S20). Graz B1 also performed not significantly above
chance level with an accuracy of 52.68 %. Overall, the shallow CNN model performs
comparably to the proposed LSTM model. However, it is more stable across the
test splits, which is shown by a smaller variance in accuracy for within-subject test
splits when compared to the LSTM model.

Deep Convolutional Neural Network Model

Figure 3.11 presents the results obtained with the deep CNN model. The overall
mean accuracy over all subjects is 92.29% (±1.69%). For the best performing subject
S17, the mean accuracy reached 95.44% (±0.85%). In contrast to other evaluated
models in this work, the deep CNN models was able to accurately classify data within
all subjects, as the lowest mean accuracy reached still was relatively high at 89.0%
(±4.06%). Graz B1 performed comparably to NST subjects with a mean accuracy
of 92.77% (±0.87%). Furthermore, the deep CNN model shows particularly stable
results across within-subject test splits with a SD of 2.16%.

3.3.4 Summary

Figure 3.12 shows a summary of the results obtained with the proposed LSTM and
CNN models, as well as deep and shallow CNN models, representing the state of the
art in deep learning for BCI tasks. First, it can be seen that the proposed LSTM
model was on a par with the shallow CNN model for most subjects, albeit being less
stable, which can be seen by a considerably higher standard deviation. An exception
is subject S17, where the shallow CNN outperformed the LSTM model by a large
margin (≈ 20%).

The proposed CNN model achieved slightly lower accuracies than the deep CNN
model for most subjects. While it excels for six subjects (S2, S6, S13, S15, S18 and
S20), it shows inferior performance for 13 subjects (S1, S3, S5, S7, S8, S9, S10, S11,
S12, S14, S16, S17 and S19). Additionally, the proposed CNN model was unable to
classify data from subjects S5, S10 and S19, showing near chance-level performance.
On the baseline test set of subject B1 from Graz data set, both models achieve
comparable performance (91.52% vs. 92.77%).

The results are compared and discussed in the following chapter.
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Figure 3.12: Summary of the performance for all implemented models. The height
of the bars represents the mean accuracy over 5-fold cross-validation on tests sets;
whiskers represent the standard deviation.
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Chapter 4

Discussion

In this work different deep learning models were developed to classify SMR features
in EEG data for the use in a BCI: a LSTM model, a spectrogram-based CNN model,
and deep and shallow CNN models proposed in a recent publication [60]. Table 4.1
shows an overview of the results of this work compared to similar approaches in
literature.

Author Reference Model Accuracy (±σ) Classes

This work Section 3.2.3 Proposed LSTM 66.20% (±7.21%) 2

This work Section 3.2.4 Proposed CNN 84.23% (±14.69%) 2

This work Section 2.4 Shallow CNN 66.97% (±6.45%) 2

This work Section 2.4 Deep CNN 92.28% (±1.69%) 2

Schirrmeister et al. [60] Shallow CNN 71.90% (± n.a.) 4

Schirrmeister et al. [60] Deep CNN 70.10% (± n.a.) 4

Yang et al. [56] FBCSP 67.01% (±16.20%) 4

Yong et al. [2] SVM 66.90% (± n.a.) 2

Table 4.1: Comparison of classification results for motor imagery tasks using deep
learning models and traditional machine learning methods.

The LSTM model shows a performance comparable to the SVM model developed by
Yong et al. using ERD/ERS, falling short by only 0.7% mean accuracy. Considering
its suitability for processing time series data, the proposed LSTM model did not
perform as well as expected in classifying motor imagery EEG data (see Section 3.2.3
for details). A reason for this might be the limited amount of data, which rendered
the use of more complex LSTM models with either more layers, more LSTM memory
cells (or both) impractical. A preliminary test using STFT time-frequency input to
the LSTM did not show an improvement but a drop in performance, which is why
an alternative approach using CNNs was developed.

The proposed CNN model using time-frequency representations of the EEG input
improved the mean accuracy by a large margin of 18.02%. Considering the higher
number of tunable parameters for the proposed CNN model (170,734 vs. 67,84), this
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is an interesting result. Theoretically, a higher number of parameters requires more
training data to avoid overfitting. However, the proposed CNN model shows less
fluctuations during training in both training and validation loss. This leads to the
conclusion that it is not straight-forward for a LSTM to learn relevant features from
EEG data. The fact that the deep CNN model implemented in this work achieves the
highest overall accuracy albeit using raw EEG input, supports the assumption that
CNN architectures are inherently better suited to extract discriminative features
from EEG. However, CNNs typically work with fixed-size inputs, whereas RNNs
are able to handle sequences of arbitrary lengths. The fixed input size necessarily
introduces a time delay in an online BCI setup, which makes RNN-based approaches,
e.g., using LSTM, generally favorable.

Interestingly, in the original work of Schirrmeister et al. [60] the shallow CNN model
achieved slightly better results than the deep CNN model (71.90% vs. 70.10% for a
four-class problem) on the publicly available BCI Competition IVa dataset. When
using an in-house recorded dataset (High-Gamma Dataset, see original publication
for details [60]), the results shift in favor of the deep CNN model (92.5% vs. 89.3%).
The superiority of the deep CNN model is supported by the results obtained in
the implementation of both models in this work (92.28% vs. 66.97%). However,
the drop in accuracy between the two CNN models in this work is striking. The
reasons for this are unclear, but a possible explanation could be differing parameters
for the Adam optimizer, as they were not described in the original publication of
the models. Better hyperparameters for the optimizer could significantly improve
training, which holds especially true for models that use non-standard activation
functions such as squaring or taking the logarithm, which were both utilized in the
shallow CNN model.
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Conclusion

This work contributed two deep learning-based models for decoding motor imagery
movements from EEG data to the BCI toolbox. It was shown that a simple LSTM
model can successfully learn and classify EEG data in a two-class classification task.
The obtained accuracy is comparable to state-of-the-art results using traditional
methods, but inferior to the outcome of CNN models.

Initially, this thesis project intended to implement the LSTM model for a four-class
classification task and then convert it to a spiking neural network architecture for
the use on the neuromorphic platform TrueNorth [63]. However, the LSTM model
proved to be inferior to CNN-based approaches, which is why the objective of this
work was reshaped in favor of the development of a CNN model. In retrospect,
this decision proved to be favorable, as the proposed CNN model possesses several
advantages over the LSTM model. First, the performance of the CNN model is
vastly superior to the LSTM model. In addition, preliminary tests on a three-
class classification task on the NST data showed promising results with only small
drops in accuracy compared to the respective two-class problem. Second, and more
importantly, IBM provides a software framework for training and deployment of
CNN-based architectures, while RNN-based implementations on TrueNorth are still
in its infancy [64]. Currently, a CNN model on TrueNorth only supports quadratic,
low-resolution input. Therefore, a time-frequency transformation using STFT is
particularly suitable for mapping relevant channels of high-dimensional EEG data to
lower-dimension spectrogram representations. Therefore, the proposed CNN model
has a better prospect concerning its convertibility to TrueNorth than the deep CNN
model, which uses raw EEG input.

All of the models presented in this work still leave room for considerable improve-
ment, especially for multiclass classification tasks. Bashivan et al. combined both
CNN and LSTM to a hybrid model that outperformed individual CNN and LSTM
implementations on event-related potentials [59]. A similar approach has not yet
been evaluated on motor imagery tasks, but it seems extremely promising as it could
combine both the capability of convolutional kernels to extract robust features with
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the ability of RNNs to process sequential data.

As limited EEG data availability poses a problem for deep learning approaches,
transfer learning could turn out to be the redemption for stagnating decoding ac-
curacies in BCI research. Transfer learning is based on the idea that knowledge
discovered in solving one task could also be useful for another, related task. For the
case of EEG classification, a related field could be audio signal processing. Large-
scale datasets of labeled audio events are publicly available (e.g., Audio Set by
Goolge Research [65]), which could be used for pre-training deep learning models.
The pre-trained layers could then serve as feature extractors in another model for
EEG classification, as models trained on audio data are typically able to extract
information from frequency domain. As their sampling rate and frequency range
differs from EEG data, audio signals could be pitch-shifted and resampled to better
match the characteristics of EEG recordings.
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