
Fynn Flügge

Design and Implementation of a Vulkan
Engine

Case Study of Capabilities and Performance

Master's Thesis

Technology





Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as
specifically permitted in writing by the publishers, as allowed under the terms and
conditions under which it was purchased or as strictly permitted by applicable
copyright law. Any unauthorized distribution or use of this text may be a direct
infringement of the author s and publisher s rights and those responsible may be
liable in law accordingly.

Imprint:

Copyright © 2018 GRIN Verlag
ISBN: 9783668868236

This book at GRIN:

https://www.grin.com/document/456305



Fynn Flügge

Design and Implementation of a Vulkan Engine

Case Study of Capabilities and Performance

GRIN Verlag



GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by
students, college teachers and other academics as e-book and printed book. The
website www.grin.com is an ideal platform for presenting term papers, final papers,
scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com



Master Thesis

Design and Implementation of a
Vulkan Engine

Case Study of Capabilities and Performance

Institute of Embedded Systems

Author:
Fynn-Jorin Flügge

September 25, 2018



Abstract

The Vulkan API, released in February 2016, is the Khronos Group’s answer to Microsoft’s
Direct3D 12 API published in 2015. Due to the revolutionary capabilities provided
by the new API’s to the programmer, the releases were accompanied by an enormous
hype. Vulkan and Direct3D 12 provides the programmer unprecedented control and
empowerment over the GPU and its memory, which might introduce a new era in GPU
computing. This elaboration deals with the design and implementation of a graphics
engine along with state-of-the-art rendering features using the Vulkan API. The Vulkan
engine is built upon the OpenGL engine Oreon Engine [1] developed in a previous thesis
and used in the research elaboration Realtime GPGPU FFT Ocean Water Simulation
[2]. Finally, an extensive study concering the capabilities of the new Vulkan API and
its performance advantage compared to OpenGL is demonstrated.

I



Acknowledgements

I gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan Xp GPU used for this research.

II



Contents

1 Introduction 1

2 Why New API? 4
2.1 Origin and History of Vulkan . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Vulkan - More Performance and Efficieny . . . . . . . . . . . . . . . . . . . . 5
2.3 Will OpenGL Get Outdated? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Vulkan API Overview 8
3.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Vulkan Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 VkPhysicalDeviceProperties . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2 VkPhysicalDeviceFeatures . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.3 VkPhysicalDeviceMemoryProperties . . . . . . . . . . . . . . . . . . . 12
3.4.4 VkDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Window System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Command Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Render Passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Framebuffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Push Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.15.1 Fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15.3 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15.4 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.16 SPIR-V Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Case Study Scenario 28
4.1 Deferred Shading with MSAA . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Transparency Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 FXAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Bloom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Dynamic Panel Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III



5 Engine Design and Implementation 39
5.1 Ocean Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Displacement Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Dy-Normalmap and Mipmap Generation . . . . . . . . . . . . . . . . . 45
5.1.3 Scene Reflection/Refraction and Deferred Shading . . . . . . . . . . . 45

5.2 Opaque Scene G-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Sample Coverage and Deferred Shading . . . . . . . . . . . . . . . . . . . . . 50
5.4 Transparent Scene and Blending . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 FXAA and Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Panel Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Case Study: OpenGL vs. Vulkan 51

7 Evaluation 58

Appendix 59
A Measured Simulation Data - OpenGL . . . . . . . . . . . . . . . . . . 59
B Measured Simulation Data - Vulkan . . . . . . . . . . . . . . . . . . . 62

IV



List of Figures

1.1 GPU vs CPU Peformance Scaling . . . . . . . . . . . . . . . . . . . . . 2
1.2 Comparison of the Nvidia GPUs FX5800, FX5900 and 6800 . . . . . . 3

2.1 Platform Support of Next Generation GPU APIs . . . . . . . . . . . . 5
2.2 Vulkan Explicit GPU Control . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Vulkan Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Immediate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 FIFO Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Mailbox Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Vulkan Pipeline Block Diagram . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Descriptor Set Layout and Pipeline Layout . . . . . . . . . . . . . . . . 23
3.7 Slow Barrier Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Optimal Barrier Example . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 SPIR-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 G-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Sample Coverage Mask Image . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Deferred Lighting scene . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Sun Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Transparency Scene Composition . . . . . . . . . . . . . . . . . . . . . 32
4.6 FXAA Scene Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Antialiasing Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Brightness Scene Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Horizontal Gaussian Bloom Blur . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Vertical Gaussian Bloom Blur . . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Bloom Scene Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.12 Bloom Effect Composition . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.13 Panel Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.14 Blended Panel Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Vulkan Image Synthesis Loop . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Water Resources Command Buffers . . . . . . . . . . . . . . . . . . . . 41
5.3 FFT Displacement Maps Generation . . . . . . . . . . . . . . . . . . . 42
5.4 Framebuffer Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Render Pass Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 2x MSAA - FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

V



6.2 2x MSAA - CPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 2x MSAA - GPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 2x MSAA and FXXA - FPS . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 2x MSAA and FXAA - CPU Load . . . . . . . . . . . . . . . . . . . . 53
6.6 2x MSAA and FXAA - GPU Load . . . . . . . . . . . . . . . . . . . . 53
6.7 4x MSAA - FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.8 4x MSAA - CPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.9 4x MSAA - GPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.10 4x MSAA and FXAA - FPS . . . . . . . . . . . . . . . . . . . . . . . . 55
6.11 4x MSAA and FXAA - CPU Load . . . . . . . . . . . . . . . . . . . . 55
6.12 4x MSAA and FXAA - GPU Load . . . . . . . . . . . . . . . . . . . . 55
6.13 4x MSAA - FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.14 8x MSAA - CPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.15 8x MSAA - GPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.16 8x MSAA and FXAA - FPS . . . . . . . . . . . . . . . . . . . . . . . . 57
6.17 8x MSAA and FXAA - CPU Load . . . . . . . . . . . . . . . . . . . . 57
6.18 8x MSAA and FXAA - GPU Load . . . . . . . . . . . . . . . . . . . . 57

VI



Acronyms
API Application Programming Interface

CPU Central Processing Unit

FFT Fast Fourier Transform

FLOPS Floating point operations per second

GB/s Gigabit per second

GFLOPS Giga FLOPS =̂ billion FLOPS

GPU Graphical Processing Unit

RAM Random Access Memory

MSAA Multisample Antialiasing

FXAA Fast Approximated Antialiasing

FPS Frames Per Second

VII



Chapter 1

Introduction

Over the past years, GPU computing has become more and more relevant in a wide
range of application environments. Since the early 2000s, when the first GPUs with
programmable shader units were launched, the bandwidth of GPU accelerated applica-
tions has reached new dimensions. Since then, GPUs have taken on much more the
"role as a processor" [3, p.18], because GPUs are significant faster than CPUs in solving
tasks with high data parallelism. Figure 1.1 demonstrates the evolution of GPU and
CPU performance measured in computing power (GFLOPS) and the data transfer rate
(GB/s) from 2001 to 2014 and 2003 to 2013, respectively. Already in the years 2002
to 2003, the GPU performance (in GFLOPS) has risen up to the factor of 6, while
the clock rate even decreased by 20% as listed in figure 1.2. Due to that enormous
role change of GPUs and the resulting new possibilities in offscreen computing, many
industrial sectors next to the gaming and film industry considered this progress. As a
result of the increasing demand for GPU programmers, e.g. financial companies hired
game programmers to meet these new challenges. [3] [4]

Over the next years, high-level GPU APIs (like CUDA, Stream or OpenCL) had
to rely on the graphics APIs Direct3D or OpenGL, since Direct3D and OpenGL serve
as the interface between CPU and GPU communication. Direct3D’s and OpenGL’s
initial releases were in the early 1990s. Obviously computer hardware has advanced
enormously until today, which reveals some disadvantages in still relying on the low-level
GPU APIs Direct3D (pre Version 12) and OpenGL. Hence, Microsoft released Direct3D
12, an overhauled version of its graphics API Direct3D within the scope of the DirectX
12 release. Soon after, in early 2016, Vulkan was released by the Khronos Group. Unlike
Direct3D 11 (and backwards) and OpenGL, Vulkan and Direct3D 12 were evolved under
consideration of modern computer hardware’s architecture and features to unleash its
full power. [3] [5] [6]

1



This elaboration targets the development of a Vulkan graphics engine with a
performance comparison of Vulkan and OpenGL. The next chapter introduces the
Vulkan API and its history and points out the advantages of Vulkan compared to
OpenGL and Direct3D 11 (and backwards) on modern computer hardware. Following
this, the core elements of the Vulkan API specification used in the developed Vulkan
engine are described in chapter three. The realtime simulation scenario including a
GPGPU FFT generated ocean for the case study and the Vulkan engine implementation
design is extensively explained and illustrated in the subsequent two chapters. Finally,
the measured performance results of the simulation scenario with Vulkan and OpenGL
are presented and compared.

Figure 1.1: GPU vs CPU Peformance Scaling [4]
The two graphs show how much GPUs have outscaled CPUs in GFLOPS and GB/s
over the past years. While the Pentium 4 and the Gefore FX5800 were head to
head in 2002, the Gefore 780 Ti reaches a performance up to around 900% higher
than the Intel Ivy Bridge CPUs in 2013. Same for GB/s: While in 2003 CPUs and
GPUs were pretty much on the same level, in 2013 the 780 Ti has a lead of around
500% against the Ivy Bridge CPUs.

2



Figure 1.2: Comparison of Nvidia GPUs [3, p. 16]
The GFLOPS of the Geforce FX5900 has increased by the factor of 2.5 compared to
the Geforce FX5800, while the transistor count just increased by the factor of 1.074
and the clock rate even decreased by 5%. The Geforce 6800 reaches a performance
of 50 GFLOPS, 2.65 times more than the FX5900 and 6.625 times more than the
FX5800, while the transistor count has increased by the factor of 1.7 and the clock
rate decreased by 15,8% compared to the FX5900.

3



Chapter 2

Why New API?

This chapter introduces Vulkan and its history and outlines the advantages of Vulkan
over OpenGL. Finally, the question is clarified if OpenGL is still viable or if it will be
outdated by Vulkan soon.

2.1 Origin and History of Vulkan
Vulkan is a cross-plattform next generation 3D graphics and compute API and is
considered as the successor to OpenGL and OpenGL ES1. The official 1.0 specification
of Vulkan was released on the 16th of February 2016 by the Khronos Group. [7]

In contrast to OpenGL, Vulkan is a minimal abstraction of the GPU hardware,
which facilitates its portability across multiple GPU vendors and device types, such
as desktop, mobile or embedded systems. The first discussions about the idea of a
completely new graphics API were already held in October 2012. Until the 1.0 release
in February 2016, famous hardware and software vendors like Nvidia, AMD, Lucasfilm
Ltd., EA, Epic Games and many more contributed to the development of Vulkan. [8] [9]

In contrast to the competing APIs DirectX 12 (Microsoft Windows) and Metal
(macOS, iOS), Vulkan is the only cross-platform next generation graphics API. Further,
Vulkan is not only cross-platform but also supported by mobile devices and embedded
systems across multiple GPU hardware vendors. Figure 2.1 illustrates the platform
support comparison of the three next generation APIs Vulkan, DirectX 12 and Metal.
In 2018, Vulkan is also supported by Apple platforms with the MoltenVK API, which
maps Vulkan to Metal. Additionally, many popular Game Engines like Unreal Engine,
Unity, CryEngine and Xenko offer Vulkan support. [9] [10]

1OpenGL ES is the OpenGL congruent specification for embedded systems

4



Figure 2.1: Platform Support of Next Generation GPU APIs [9, p. 21]
The illustration shows the range of Vulkan platform support in contrast to DirectX
12 and Metal. While Vulkan offers platform support for the latest four Windows
versions, Ubuntu and Android (and some more), DirectX12 and Metal are dedicated
to Windows 10 and MacOS respectively. Meanwhile, Vulkan runs also on Nintendo
Switch consoles and Apple platforms (with MoltenVK).

The next section clarifies the question why there was such a big desire by the
developers for a new graphics API and why Vulkan is considered to be next generation.
In order to confirm this, a theoretical and abstract comparison of Vulkan and OpenGL
in performance and efficiency is demonstrated.

2.2 Vulkan - More Performance and Efficieny
The graphics API OpenGL has been initially released in 1992. Since then, the archi-
tecture of GPUs and platforms has evolved enormously. OpenGL was fundamentally
invented for fixed graphic workstations with single-threaded direct renderers and split
memory. 25 years ago, no considerations about multi-core CPU architecture and
multi-threading were made. Hence, OpenGL doesn’t provide a parallel multithreading
execution model and thus multi-core CPUs cannot be effectively used. Further, the
OpenGL model doesn’t match mobile device arichtectures and platforms. That’s why
OpenGL ES has been outsourced as a standalone API for smartphones, tablets and
video game consoles. However, OpenGL ES is based on OpenGL which was not tailored
for mobile GPU hardware. [11] [8] [12]

A further point is that GPU vendors are responsible for their individual OpenGL
API implementation within the scope of their GPU drivers, since OpenGL is just an API
specification, which describes the interface and its expected behaviour. This leads to
complex and unpredictable drivers with different bugs on different GPUs. Programmers

5



doesn’t really know what is happening behind the OpenGL interface within the related
driver and its hidden implementation. The driver has to do lots of work like state
validation, dependency tracking and error checking. This driver overhead limits or even
randomizes the performance. In addition, each driver has to provide an implementation
of the GLSL shader language compiler and thus different behavior of the same GLSL
shadercode across different GPU drivers can occur. As a consequence, software that
uses OpenGL must be tested against multiple GPU vendors and often implementation
variabilities across these vendors are necessary. [11] [13] [5]

In summary, OpenGL can no longer be considered as contemporary and thus
programmers desired a completely new next-generation GPU API. The answer to the
programmer’s desirement is the Vulkan API. Since software in graphics, vision and deep
learning across diverse devices and platforms will profit from GPU acceleration, a next
generation GPU API should be flexible and portable. In contrast to OpenGL, Vulkan
is designed for modern cross-platform usage on cloud, desktop, console, mobile and
embedded devices. Hence, there are no separate APIs necessary for desktop and mobile
devices as OpenGL and OpenGL ES. Further, Vulkan provides efficient usage of multi-
core CPUs and a parallel multithreading execution model. GPU vendors does not need
to provide their individual implementations of Vulkan for their drivers, because Vulkan
is not only a specification that just defines the interface and its behaviour (as it is the
case in OpenGL) but Vulkan is also open source with one explicit implementation for all
GPU vendors. Hence, the problem that software needs often a tailored implementation
for different GPU vendors, as it is the case for OpenGL, does not exist for Vulkan.
Moreover GPU vendors do not even need to provide a compiler for the shader language
within their drivers, because Vulkan uses precompiled SPIR-V shader files. [5] [9]

However, the most important innovation in the Vulkan API is the principle of
explicit control. As mentioned before, one big problem with OpenGL is the driver
overhead. The programmer must explicitly tell the Vulkan driver everything he is
going to do in advance. This explicitness simplifies the GPU driver and favors cross
vendor consistency, which makes Vulkan that much portable and flexible. Moreover,
the explicit control reduces driver overhead and latency, which leads to a reduced CPU
load and at the end a better performance. In contrast, OpenGL allows the programmer
to change the state at any time which may result in huge performance costs, especially
when the programmer changes the OpenGL render state very late just before a draw or
compute command. [5] [9] [8]

As a final point, Vulkan allows the programmer to disable validation and error
checking (for example in delivery versions) which reduces driver overhead even further.
[5] Figure 2.2 illustrates the driver overhead comparison of Vulkan and OpenGL/OpenGL
ES.

6



Figure 2.2: Vulkan Explicit GPU Control [5, p. 16]
Figure 2.2 delineates the driver overhead (orange-colored blocks) and the application
responsibility (green-colored blocks) of Vulkan and OpenGL/OpenGL ES over the
GPU. The application-block of Vulkan is multiple times larger than the OpenGL’s
application-block, which means that the programmer is responsible for many things
in order to run a Vulkan application efficiently. As a consequence, the driver overhead
of Vulkan is multiple times smaller than in OpenGL/OpenGL ES, which leads to a
better performance and efficiency.

2.3 Will OpenGL Get Outdated?
After listing the strengths of Vulkan in contrast to the weaknesses of OpenGL, the
question arises whether Vulkan will supersede OpenGL completely in the future. Even
if it is obvious after a close examination that Vulkan has much more potential than
OpenGL and solves all the problems OpenGL poses, the answer to this question is most
likely: No.
Using Vulkan is extremely challenging and needs a lot of effort compared to OpenGL. For
purposes where the main focus is not on performance, OpenGL is still more appropriate
and the Khronos Group will not discontinue the evolvement of OpenGL and OpenGL
ES soon. Nevertheless, for applications where the work can be well parallelized and
the CPU load and performance is significant it is worth using Vulkan despite its many
challenges and big effort.

7



Chapter 3

Vulkan API Overview

This chapter introduces the core elements and functions of the Vulkan API. All of
the following Vulkan elements are used in various ways by the implementation of the
Vulkan engine developed in the scope of this thesis.

First of all, the Vulkan syntax and its handling is mentioned. Every Vulkan function
starts with the prefix vk. Vulkan objects or structures starts with Vk and enumerations
with VK. Informations for object creations are generally handled as structures. These
structures are created according to the following pattern in C++ and Java and are
used as parameters for object creation functions with the prefix vkCreate.

// C++ Syntax
VkXXXInfo info = {};
info.sType = VK_STRUCTURE_TYPE_XXX_INFO;
info.pNext = nullptr;
info.foo = ...;
info.bar = ...;

// Java Syntax
VkXXXInfo info = VkXXXInfo.calloc();
info.sType(VK_STRUCTURE_TYPE_XXX_INFO)
info.pNext(VK_NULL_HANDLE)
info.foo(...)
info.bar(...);

Listing 3.1: Vulkan Structs Pattern

XXX is a placeholder for the Vulkan information name (e.g. VkFrameBufferCreateInfo
for creating a VkFrameBuffer object). The sType parameter is an enumeration with
again XXX as the placeholder for the name of the Vulkan information. pNext is an
optional pointer to a struct of a Vulkan extension which is rarely used (not used by
the Vulkan implementaion of this thesis), hence, it can be set to a nullpointer (C++)
resp. to the enumeration VK_NULL_HANDLE (Java). Vulkan functions generally return
an enumeration which is VK_SUCCESS for successful execution or a specific enumeration
to identify an error during function call. [14] [15] [16]

8



3.1 Layers
As metioned in section 2.2, all kind of validation and error checking in Vulkan can
be enabled or disabled. Since Vulkan is a minimal hardware abstraction to reduce
the overhead as much as possible, the driver has no built-in validation and error
checking. The Vulkan driver does not provide any feedback and assumes that the
programmer does everything correctly. However, to enable any kind of validation
Vulkan was designed as a layered architecture. Developers can enbale validation by
inserting layers between the application (top layer) and the Vulkan API (bottom layer).
Layers facilitates the development with Vulkan, since they provide validation and error
checking by intercepting Vulkan functions and modify or evaluate them, so that the
developer can debug its application or obtain any kind feedback when calling Vulkan
functions. It is even possible to cascade multiple layers into a layer chain. However, layer
injection should be disbaled in released versions, since they decrease the performance.
Furthermore, developers can create their own layers for individual purposes. [17] [14]

A set of useful validation layers are provided by LunarG1 in its Vulkan SDK. The layer
VK_LAYER_LUNARG_standard_validation involves a layer chain for common usage and
is sufficient in most use cases. Since SDK 1.0.68, VK_LAYER_LUNARG_assistant_layer
is available which provides feedback about potential performance issues or suspect usage
patterns. [18]

Figure 3.1 shows the interaction of Vulkan layers with Vulkan drivers and applica-
tions.

Figure 3.1: Vulkan Loader [17]
The Vulkan loader is the interface between application and Vulkan drivers (ICD)
with the related devices. The loader injects enabled layers between application and
driver and delivers Vulkan function calls to a specific ICD by inserting a set of layers
prior to the a subsequent function call by the ICD. The Vulkan loader is responsible
for supporting on or more independent Vulkan ICD’s on a system. [17]

1Software company responsible for Vulkan runtime and SDK

9



3.2 Extensions
Extensions expand the functionality of the Vulkan API by providing new functions,
structures or enumerations. Extensions can be created by independent developers
and must be specified and registered by the Khronos Group in order to become an
official extension within the published Vulkan specification. There exist two types
of extensions, instance-level extensions and device-level extensions. Instance-level
extensions extend the functionality of VkInstance objects, while device-level extenions
extend the functionality of VkDevice objects. If the programmer intends to use
extensions in the application, the extension-support must be queried and enbaled in
advance at instance and device creation, respectively. [14] [17]

3.3 Vulkan Instance
The Vulkan object VkInstance is the starting point for every Vulkan application. It
exists exactly once per application. The VkInstance gathers information about the
application such as application name, engine name and version. Also used extensions and
layers must be specified in advance at VkInstance creation with the vkCreateInstance
function call. In order to specify extensions, their platform availablity should be queried
with the vkEnumerateInstanceExtensionProperties function. Further, available
physical devices (GPUs) must be queried and created as logical devices from the Vulkan
instance. [14] [16]

3.4 Devices
Devices in Vulkan represent GPUs within the operating system. The GPU representation
is splitted into physical and logical devices as the Vulkan objects VkPhysicalDevice
(representing a physical device) and VkDevice (representing a logical device). The
logical device object VkDevice, on which all common Vulkan operations like draw-
ing, computing or memory allocations are executed, serves as the interface to the
GPU. In order to create a VkDevice object for feeding the GPU with work, the
operating system has to be queried for available physical devices with the
vkEnumeratePhysicalDevices function. Since Vulkan applications can run on work-
stations, notebooks, tablets or mobile phones with all different graphics hardware and
different performance and capabilities, the GPU capabilities must be checked against
the application’s needs. Apart from that, a system may have multiple GPUs installed
so that one GPU needs to be selected by the programmer properly, which suits the
application’s needs best. Once a VkPhysicalDevice object has been selected and
created, its properties and features can be queried. [16]

10



3.4.1 VkPhysicalDeviceProperties
The VkPhysicalDeviceProperties structure holds general information about the
related physical device and is retrieved by vkGetPhysicalDeviceProperties. The
following listing shows the VkPhysicalDeviceProperties of the Titan Xp:

apiVersion = 0x401046 (1.1.70)
driverVersion = 1669922816 (0x63890000)
vendorID = 0x10de
deviceID = 0x1b02
deviceName = TITAN Xp
deviceType = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU

Listing 3.2: VkPhysicalDeviceProperties of the Titan Xp

The field apiVersion indicates the Vulkan version supported by the device. The
following field driverVersion exposes the version of the installed GPU device driver.
vendorID and deviceID are unique identifiers of the GPU vendor and its manufactured
device. The value 0x10de (decimal 4318) identifies the Nvidia Corporation. The field
deviceName denotes the vendor’s GPU model name and deviceType indicates the type
of the GPU’s hardware architecture. [14]

The enumeration VkPhysicalDeviceType lists all device types that are differentiated
by Vulkan. Listing 3.3 points out the VkPhysicalDeviceType enumeration:

typedef enum VkPhysicalDeviceType {
VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,
VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,
VK_PHYSICAL_DEVICE_TYPE_CPU = 4,

} VkPhysicalDeviceType;

Listing 3.3: VkPhysicalDeviceType enumeration

As mentioned in Listing 3.2, the Titan Xp is of discrete type, which means that the GPU
is separated from the CPU with its own VRAM. In contrast, integrated device types are
embedded in or closely located to the CPU without an own RAM, since they share the
system RAM with the CPU. Generally integrated GPUs are installed in mobile devices
or laptops. The type VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU denotes that the GPU
is a virtual instance and VK_PHYSICAL_DEVICE_TYPE_CPU are GPUs and CPUs as a com-
mon entity. Further, the VkPhysicalDeviceProperties structure holds an object of
VkPhysicalDeviceLimits, which indicates the limitations of the device such as the
maximum framebuffer size or the maximum number of color attachments. [14]

11



3.4.2 VkPhysicalDeviceFeatures
VkPhysicalDeviceFeatures, obtained from vkGetPhysicalDeviceFeatures, is a struc-
ture of boolean flags indicating the support of specific features (e.g. the availability of
tessellation shaders or samplers with anisotropic filtering support). [14]

3.4.3 VkPhysicalDeviceMemoryProperties
The Vulkan execution model differentiates between the following three kinds of physical
memory, where a host in Vulkan represents the CPU environment which hosts one or
more devices:

• Device local is the video memory (VRAM). The VRAM is physically connected
to the device (GPU) without direct access from the host (CPU).

• Device local, host visible is a unified memory phsysically connected to the
device and host.

• Host local, host visible is the host’s system memory and physically connected
to the host only but also accessible by the device.

The VkPhysicalDeviceMemoryProperties object exposes information regarding avail-
able memories and is returned by vkGetPhysicalDeviceMemoryProperties. The
VkPhysicalDeviceMemoryProperties object contains two arrays of the structures
VkMemoryHeap and VkMemoryType. The VkMemoryHeap structure contains the size of
the memory and a bitmask composed of attribute flags. VkMemoryType holds an index
for indentifying to which VkMemoryHeap it corresponds and a bitmask composed of
property flags. [14]

Listing 3.4 shows the VkPhysicalDeviceMemoryProperties structure of the Ti-
tan Xp. It reveals two found memory heaps (l. 1). The first memory is of size
11.86 GB (l. 3) with the attribute VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, which in-
dicates that the memory is physically connected to the GPU. Further, there are
eleven memory types found (l. 9). The VkMemoryType at index seven and eight (ll.
13-20) belongs to the first memory (the GPU corresponding VRAM) of the two mem-
ory heaps, since heapIndex = 0 (ll. 14, 18). Since their property flags are both
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT only (lines 16, 20), it can be derived that
the first memory heap is the local video memory (VRAM) of the graphics card. The
second found memory heap with size of 15.96 GB (l. 6) and no attribute flags (l.
7) with corresponding memory types with indices 0 to 6 (ll. 10-12) and 9 to 10
(ll. 21-31) is the host’s system memory, since the corresponding memory types at
index 9 and 10 exposes the property flag VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
(ll. 24, 29), which indicates that the memory heap is directly accessible by the host.
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT (ll. 25, 30) specifies that no further host
cache management commands are needed when flushing host writes to device memory
or make device writes host-visible. VK_MEMORY_PROPERTY_HOST_CACHED_BIT (l. 31)
denotes that the memory type is cached on the host which speeds up memory access.
The memory types with index 0 to 6 have no property flags. Hence, these types have
no usage for Vulkan. [14]

12



1 memoryHeapCount = 2
2 memoryHeaps[0] :
3 size = 12734955520 (0x2f7100000) (11.86 GiB)
4 flags: VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
5 memoryHeaps[1] :
6 size = 17140023296 (0x3fda00000) (15.96 GiB)
7 flags: None
8
9 memoryTypeCount = 11

10 memoryTypes[0..6] :
11 heapIndex = 1
12 propertyFlags = 0x0:
13 memoryTypes[7] :
14 heapIndex = 0
15 propertyFlags = 0x1:
16 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
17 memoryTypes[8] :
18 heapIndex = 0
19 propertyFlags = 0x1:
20 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
21 memoryTypes[9] :
22 heapIndex = 1
23 propertyFlags = 0x6:
24 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
25 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
26 memoryTypes[10] :
27 heapIndex = 1
28 propertyFlags = 0xe:
29 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
30 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
31 VK_MEMORY_PROPERTY_HOST_CACHED_BIT

Listing 3.4: VkPhysicalDeviceMemoryProperties of the Titan Xp

1 memoryHeapCount = 1
2 memoryHeaps[0] :
3 size = 3805384089 (0xe2d18d99) (3.54 GiB)
4 flags: VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
5 memoryTypeCount = 2
6 memoryTypes[0] :
7 heapIndex = 0
8 propertyFlags = 0x7:
9 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

10 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
11 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
12 memoryTypes[1] :
13 heapIndex = 0
14 propertyFlags = 0xf:
15 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
16 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
17 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
18 VK_MEMORY_PROPERTY_HOST_CACHED_BIT

Listing 3.5: VkPhysicalDeviceMemoryProperties of the Intel HD 620

13



In contrast to the system with the Titan Xp as a discrete GPU with its local VRAM,
listing 3.5 shows the memory properties of the integrated Intel HD Graphics 620 with
a unified memory. Since only one memory heap (lines 2-4) with two memory types
(lines 6-18) containing the flags VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT (lines 9, 15)
and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT (lines 10, 16) is found for the Intel HD
Graphics 620, it follows that the device shares the memory with the host as a unified
memory, which is the common architecture for integrated GPUs. [14]

When allocating memory in a Vulkan application, it is important to consider all
available VkMemoryTypes and choose the type which suits the needs of the memory to
allocate best, since it can affect the performance significantly. [16]

3.4.4 VkDevice
Once a physical device object VkPhysicalDevice is created, the logical device object
VkDevice can be generated from it. Almost all GPU work in Vulkan is processed on
logical devices with its corresponding queues. The work is submitted to queues as
command buffers, where they are processed by the related device. Queues and command
buffers are covered later in this chapter. Device-level extensions which are intended to
be used by the application must be explicity specified during logical device creation. In
order to do this, the extension-support by the physical device should be checked with the
vkEnumerateDeviceExtensionProperties command. Further available features from
VkPhysicalDeviceFeatures must be explicitly enabled during VkDevice creation. It
also needs to be specified which queue families the application is intended to use. [14]
[16]

3.5 Queues
Queues in Vulkan (VkQueue objects) receive and process execution commands (like
draw/compute commands or memory operations). Vulkan differentiates four types of
queues. Every queue type has its individual capabilities and is dedicated for specific
kinds of execution commands. The queues are divided into the following types:

• Graphics queues are specialized for draw commands. Further, only graphics
queues are able to display images onto the screen.

• Compute queues are optimized for offscreen compute operations.

• Transfer queues are optimized for memory operations.

• Sparse queues support sparse memory operations.

Different GPUs possess individual sets of queues, which support one or more queue types.
These queue sets are seperated into queue families. The available queue families of a
physical device can be queried with vkGetPhysicalDeviceQueueFamilyProperties.
[14] [16]

14



1 VkQueueFamilyProperties[0]:
2 queueFlags = GRAPHICS | COMPUTE | TRANSFER | SPARSE
3 queueCount = 16
4 timestampValidBits = 64
5 minImageTransferGranularity = (1, 1, 1)
6 VkQueueFamilyProperties[1]:
7 queueFlags = TRANSFER
8 queueCount = 1
9 timestampValidBits = 64

10 minImageTransferGranularity = (1, 1, 1)
11 VkQueueFamilyProperties[2]:
12 queueFlags = COMPUTE
13 queueCount = 8
14 timestampValidBits = 64
15 minImageTransferGranularity = (1, 1, 1)

Listing 3.6: VkQueueFamilyProperties of the Titan Xp

Listing 3.6 shows the queue families of the Titan Xp. The first queue family (lines
1-5) supports graphics, compute, transfer and sparse queue types (line 2). There are
16 queues of this queue family available (line 3). The timestampValidBits (line 4)
field indicates how many bits are available when writing timestamps into memory. The
field minImageTransferGranularity (line 5) indicates the minimum granularity of
image texel block transfer operations for x-,y- and z-dimensions of the image. However,
timestampValidBits and minImageTransferGranularity are not further considered
in this thesis. The second queue family supports transfer capabilities (line 7) and
contains one queue (line 8). The third queue family provides eight queues (line 11) of
compute type (line 12). [14]

The Vulkan queue model facilitates concurrency. For optimal usage, the application
can split its work into segments and submit these segments to multiple queues. For best
performance, the work segments can be categorized into graphics, compute, transfer
or sparse type and submitted to a queue of the appropriate queue family. The work
must be submitted to queues as VkCommandBuffer objects (more on command buffers
in section 3.7). Since the queues process their work asynchronously, the synchronization
of the segments is completely in the developer’s hands. Moreover, it is not guaranteed
that one queue processes its work in the same order the work was submitted to the
queue. For proper inter- and intra-queue synchronization, Vulkan provides various
synchronization objects (more in section 3.15). As mentioned in section 3.4.4, it must
be explicitly specified at VkDevice creation which queue families are intended to be
used. After logical device creation, queues can be accessed via vkGetDeviceQueue. [16]

15



3.6 Window System Integration
Since Vulkan is a platform-agnostic low-level hardware abstraction, the API core itself
does not provide a mechanism to present images onto a screen. In order to display
rendered images, a set of instance-level and device-level extensions must be explic-
itly enabled. The instance-level extension VK_KHR_surface provides a VkSurfaceKHR
object, which represents a logical abstraction of a native platform surface. An addi-
tional instance-level extension must be enabled to connect the generic surface object
VkSurfaceKHR to the platform specific window system (e.g. VK_KHR_win32_surface
for Windows platforms). After enabling the VkSurfaceKHR extension and the appro-
priate platform surface extension at instance creation, the surface can be created with
vkCreateWin32SurfaceKHR on Windows platforms (similar for other platforms, e.g.
vkCreateAndroidSurfaceKHR on Android platforms). [19] [20]

For presenting images onto the surface, a swapchain provided by the device-level
extension VK_KHR_swapchain is needed. Swapchains in Vulkan are responsible for
displaying rendered images and must be created explicitly by the programmer. The
Vulkan core API does not provide a swapchain (or default framebuffer as OpenGL
does) itself. Even though Vulkan is a graphics API, not every use case needs a graphics
output, such as GPGPU accelerated applications. Further, different operating systems
provide different window systems for displaying images onto a monitor. However,
Vukan is a platform-agnostic API. That’s why surfaces and swapchains are provided by
extensions and must be created explicitly and OS dependent by the programmer if a
monitor output is desired. In order to create a swapchain, a device needs to be selected,
which possesses a queue family with the capability of displaying images to a window
surface, but not every queue family supports presentation to a given surface. Hence,
the device-extension function vkGetPhysicalDeviceSurfaceSupportKHR verifies the
presentation support for a given logical device, surface and queue. [19] [16]

As mentioned, swapchains are responsible for the display output and holds a set of
images for presenting them. To present something on the window surface, the application
acquires an image from the swapchain, renders to the image and returns it afterwards
back to the swapchain. A swapchain image is acquired with vkAcquireNextImageKHR
and returned back as a present request to the swapchain with vkQueuePresentKHR.
At present request with vkQueuePresentKHR a queue that supports presentation must
be specified. The swapchain provides four different presentation modes specifying in
which condition the images are presented. By selection of an appropriate mode, screen
tearing1 can be prevented. Since not every device supports all four presentation modes,
available modes must be checked in advance. The presentation modes are presented in
the following. [19] [16] [20]

1Screen tearing is an effect where artifacts from multiple images are displayed at once.

16



Immediate

Figure 3.2: Immediate Mode [20]

In the immediate presentation mode the
swapchain holds exactly one presentable image
and immediately displays the image at appli-
cation’s present request. At high frame rates
tearing may be noticeable. Figure 3.2 shows an
immediate presentation scenario. The presen-
tation engine symbolizes the swapchain with
the surface resp. monitor. The swapchain
holds seven images. Images 1, 5 and 7 are
acquired by the application. Images 2, 3 and
6 are unused and ready to acquire. Image 4
is currently present on the monitor. Once the
application calls a present request on one of
the acquired images, image 4 is immediately
displaced by the acquired image on which the
present request is called. Simultaneously, im-
age 4 is moved to the unused image pool of
the swapchain. [14] [20]

FIFO

Figure 3.3: FIFO Mode [20]

In this mode, the swapchain holds a queue of
presentable images and selects the image to
display according to FIFO rule. Tearing does
not occur, since the swapchain is waiting for
v-sync1 signals of the monitor before replac-
ing the displayed image by an image from the
queue. Figure 3.3 shows a FIFO presentation
mode example. Images 1, 5 and 7 are acquired
by the application. Images 2 and 3 are unused
and ready to acquire. Image 4 is currently
present on the monitor. Image 6 is waiting
in the FIFO-queue for being displayed. Once
the application calls a present request on an
acquired image, this image is added to the
FIFO-queue. After v-sync is signalled, image
4 is displaced by image 6, the first (and only)
image in the queue. Simultaneously, image
4 is moved to the unused image pool of the
swapchain. [14] [20]

1Vertical synchronization prevents the display image data to be updated while the monitor builds
up its screen.

17



FIFO Relaxed
This mode is similar to FIFO, but the presented image is immediately released after the
first v-sync signal since it was displayed. The FIFO Relaxed mode may expose tearing
when the refresh rate of the monitor exceeds the framerate of the application. Hence,
this mode is only reasonable for applications with high framerates. [20]

Mailbox

Figure 3.4: Mailbox Mode [20]

The Mailbox mode is similar to FIFO,
but only one presentable image is wait-
ing for being displayed. If the appli-
cation calls a present request on an ac-
quired image, the image that waits for
being presented is replaced by the image
on which the present call was executed.
Figure 3.4 shows such a mailbox presen-
tation scenario where image 6 is moved
to the unused image pool instead of be-
ing presented, because the present request
by the application on an acquired image
occured before the v-sync signal. [14]
[20]

The presentation of images needs additional synchronization between swapchain
and logical device queue with Semaphores [16]. Synchronization is covered in section
3.15.

3.7 Command Buffers
Command buffers, represented by VkCommandBuffer objects, are containers holding a
set of execution commands. Command buffers must be allocated from command pools
(VkCommandPool). All kind of work for GPUs is submitted as command buffers via
VkQueue objects to a device. In contrast to OpenGL, where commands are implicitly
collected by the driver and immediately transferred to the GPU, multiple Vulkan GPU
commands might be recorded in advance into a single VkCommandBuffer and can be
submitted all at once. Recorded command buffers can afterwards be reused as often
as intended. Hence, command buffers relieves the CPU a lot by summarizing multiple
GPU commands into a VkCommandBuffer object, which can be submitted to the GPU
with only one CPU call. Vulkan command record functions have the prefix vkCmd.

18



Command buffers can be recorded concurrently and submitted via multiple threads.
Further, Vulkan provides secondary and primary command buffers. Multiple secondary
command buffers can be recorded in multiple threads and finally, all concurrently
recorded secondary command buffers can be submitted within a primary command
buffer to the GPU at once. However, every thread needs its own command pool to
allocate command buffers from. [14] [16]

3.8 Render Passes
Render passes in Vulkan define the scope of one or multiple rendering commands as
a VkRenderPass object which consists of a set of attachments and subpasses with
dependencies between these subpasses. A render pass specifies how attachments are
used by its subpasses. By means of render passes the Vulkan driver is able to setting
up its hardware in advance, such that the rendering operations are executed under
optimal conditions. The attachments of a VkRenderPass object specify all attachments
that are used in at least one of the subpasses as a framebuffer attachment (input, color,
depth/stencil). Further, the initial and final image layouts of each attachment must
be specified along with the image format and number of samples. Image formats and
layouts in Vulkan are covered later in section 3.14. By specifying the initial and final
layouts of the attachments, the driver implicitly executes image layout transitions on
the attachments at the beginning and end of the render pass. These transitions are
necessary to have the attachments in the right format at the start of the render pass
resp. to set up the layouts of the attachments for purposes later when the render
pass has finished. A render pass must contain at least one subpass. A subpass holds
references of the attachments which are intended to be used by the subpass. Further,
the usage of each attachment must be specified (input, color, depth/stencil) together
with its image layout. Again the driver implicitly performs an image layout transition
to the specified layout before entering the subpass execution. Subpass dependencies
synchronize the access to attachments between subpasses resp. between a subpass and
the entry or exit of the render pass. Hence, at least two subpass dependencies must be
specified. As an example, if one subpass is writing to an attachment while the next
subpass wants to read from the same attachment, a subpass dependency synchronizes
the two subpasses by blocking the read access for the second subpass until the first
subpass has finished writing to the attachment. [16] [21]

3.9 Framebuffers
Vulkan framebuffers, represented by VkFrameBuffer objects, are closely connected
to render passes. The attachments used in a render pass are enveloped as a set of
VkImageView (3.14) references in a VkFrameBuffer object. Since a framebuffer always
acts in conjunction with a specific render pass, a VkRenderPass reference must be
specified at VkFrameBuffer creation. [16]

19



3.10 Pipelines
A Vulkan pipeline specifes what the GPU is claimed/demanded to do in a render
or compute operation by encompassing a programmable shaderpipeline and a set of
configurable function states along with a render pass reference in a VkPipeline object.
By means of a pipeline object, the GPU is aware of almost all configurations of a
render or compute operation in advance. VkPipeline objects are immutable except
for some few configurable dynamic function states. If a shader or a state in the fixed
function configuration needs to be marginally switched, a separate VkPipeline object
must be created. Hence, many pipeline objects need to be created in advance for
all different combinations of shaders and configurations. Pipelines are separated into
graphics pipelines and compute pipelines. Graphics pipelines represent common draw
operations with vertex input assembler, graphics shader pipelines and rasterization
while compute pipelines define offscreen compute operations with a single compute
shader module without vertex input assembler or rasterization. [14] [16]

The programmable shaderpipeline of graphics or compute pipeline objects is similar
to the OpenGL shaderpipeline with the shader stages vertex, tessellation, geometry,
fragment and compute. The difference is that Vulkan uses precompiled shader bytecode
instead of GLSL shader files as OpenGL does. Vulkan shader stages with its precompiled
bytecode are represented as VkShaderModule objects. At VkPipeline creation multiple
(or one for compute pipelines) VkShaderModule objects are specified as a shaderpipeline.
The configurable function state consists of a set of pipeline configuration state objects.
Every configuration state object must be explicitly specified even if the programmer
doesn’t take care about some of them. These configuration state objects are listed and
briefly explained below:

• Vertex Input State specifies the layout and format of the vertex buffer.

• Vertex Input Assembly State defines the topology (points, lines, triangles
etc.) of the vertices.

• Rasterization State adjusts the configuration of the rasterizer auch as the
polygon cullmode.

• Color Blend State specifies the color and alpha blending functions to be applied.

• Multisample State sets the number of samples together with some additional
multisampling configurations.

• Viewport State sets up the viewport size and offset.

• Depth and Stencil State enables or diables depth and stencil test together
with compare function parameters.

• Tessellation State defines the control point number for tessellation patches
(Ignored if tessellation is disabled).

20



• Dynamic State enables dynamic state functions. Even though pipeline objects
must be configured in advance and cannot be modified afterwards, a small set
of states can be dynamically changed during command buffer execution. These
modifiable states must be explicitly enabled within the dynamic state object.

In addition to the configuration state objects a pipeline layout must be specified at
VkPipeline creation. The pipeline layout contains a set of descriptor set layouts and
optionally informations about a push constants block. Descriptors and push constants
are covered in the following sections 3.11 and 3.12. [22] [16]

Figure 3.5 illustrates the Vulkan pipeline with its programmable shader stages and
configureable functions stages as a block diagram.

21



Figure 3.5: Vulkan Pipeline Block Diagram [23]
The block diagram shows the Vulkan graphics/compute pipeline as a block diagram where
one block element represents a specific pipeline stage or resource. The left block flow diagram
from Draw to Color/Blending Operations portrays the graphics pipeline while the right
block flow diagram from Dispatch to Compute Shader illustrates the compute pipeline. An
indirect buffer is an optional resource for the fixed function stages Draw resp. Dispatch.
Indirect buffers are needed for indirect draw and dispatch operations, where draw resp.
dispatch parameters are specified via buffers. As mentioned, graphics pipelines possess an
Input Assembler with a vertex buffer and/or index buffer as resource. Descriptor sets
(3.11) and push constants (3.12) can be used as resources in all programmable stages of
graphics and compute pipelines. The graphics pipeline is capable to access framebuffer input
attachments at the programmable Fragment Shader stage. The Pre-Fragment Operations
stage verifies the primitive fragments of the current pipeline against existing values in frame-
buffer’s Depth/Stencil Attachment (depth/stencil test) and discards or passes a fragment
depending on the specified configuration of the pipeline’s Depth and Stencil State. In
the Post-Fragment Operatins stage the depth and/or stencil values are written to the
Depth/Stencil Attachment. Colors are written into one or multiple Color Attachments at
the Color/Blending Operations stage. [23] [14]

22



3.11 Descriptors
Vulkan descriptors represent shader resources. A descriptor consists of a descriptor set
and a descriptor set layout. The descriptor set layout specifies which type of resources
(like buffers, images or samplers) are contained in the related descriptor set. The
descriptor set holds references to the actual resource data. A shaderpipeline is capable
of using multiple descriptor sets by specifying the descriptor sets in the programmable
shader stages with indices in the preserved order as specified in the related pipeline
layout. The descriptor set layouts of the descriptor sets used by the shaderpipeline
must be added to the related pipeline layout. [16] [24]

Figure 3.6 illustrates the relation of descriptor set layouts and pipeline layouts.

Figure 3.6: Descriptor Set Layout and Pipeline Layout [24]
The »Alpha« descripor set layout specifies the usage of a uniform buffer, a storage
buffer and an image view in the related descriptor set. The »Beta« descriptor
set contains a uniform buffer. »PipelineLayout B« specifies descriptor set layout
»Alpha« and »Beta« which implies the usage of two uniform buffers, one storage
buffer and one image view by the related pipeline.

3.12 Push Constants
Push constants are small blocks of raw data that can be passed to shaders in a very
straighforward manner. Unlike uniform and storage buffers push constants are provided
directly to shaders by the single command vkCmdPushConstants during command
buffer recording without encapsulating the data in a VkBuffer object and referencing it
in a descriptor set. However, the maximum data block size of push constants is highly
limited compared to uniform or storage buffers, which can hold megabytes of data.
Vulkan drivers force GPUs to offer push constants with a size of at least 128 bytes.

23



The Titan Xp supports a maximum push constants size of 256 byte. In contrast to
uniform buffers, the push constants data cannot be altered after the command buffer
was recorded. Nevertheless, if a command buffer is rerecorded, updating data with push
constants is more performant than updating uniform buffers. [16] [24]

3.13 Buffers
Buffers in Vulkan are linear memory areas for arbitrary data that is accessible by the
GPU and represented by VkBuffer objects. As mentioned in section 3.4.3, Vulkan
differentiates between three kinds of physical memory. Allocating buffers on different
kinds of memory exposes different limitations and advantages for the usage of these
buffers. Buffers allocated on discrete video memory (device local) are accessed much
faster by the GPU than buffers in system memory (host local). However, the host
cannot access discrete video memory directly and hence the host is not able to write to
it. To circumvent this limitation, the host writes the data to a buffer in a host visible
memory, also called staging buffer in this context, and afterwards the device copies the
data in the host visible memory with the vkCmdCopyBuffer to a preallocated device
local memory buffer. [16]

VkBuffer objects are used as vertex- and index-buffers for the input assembler of
graphics pipelines. Further VkBuffers serve as read and write resources for shaders
as uniform and storage buffers. Uniform and storage buffers can be much larger than
push constants. The Titan Xp offers a maximum uniform buffer size of 65,536 bytes (=
0.065536 megabytes) and a maximum storage buffer size of around 4,295 megabytes.
Uniform buffers provide read access to shaders and can be updated by the host directly
if the buffers are located on host visible memory, otherwise a staging buffer is necessary
for updating a uniform buffer. Storage buffers offer read and write operations to shaders
and are commonly of much larger size than uniform buffers. [16] [14]

3.14 Images
Images in Vulkan are represented by VkImage objects. A VkImage object defines the size,
format and layout of an image. Images are used as render targets by graphics pipelines.
Before an image is capable to be used as a render target, the related VkImageView of
the image must be created. VkImageView objects specify an explicit part of the image’s
memory together with the format to properly read the image. The VkImageView object
can be referenced as an attachment of a framebuffer what makes the image a render
target. [16] [14]

Shaders can read/sample from images or write to them. Storage image descriptor
types offer direct texel read/write access to shaders by referencing the VkImageView
object of an image in a descriptor set. With a VkSampler reference along with a
VkImageView reference in a descriptor set as a combined image sampler descriptor type,
shaders can sample from an image, where the VkSampler object specifies sampling
parameters to control the filtering and transformations of the retrieved color. [16]

An important property of images in Vulkan are image layouts. Through image
layouts the Vulkan driver can optimize the performance for specific image memory

24



utilization. Image layouts must be explicitly specified by the programmer as a proper
enumeration with the prefix VK_IMAGE_LAYOUT. Further, the programmer is responsible
for synchronization of image layout transitions via pipeline barriers or subpass depen-
dencies. Synchronization with pipeline barriers is explained in the next section. For
instance, if an image should be used as a framebuffer color attachment, it must have the
layout VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL. If the image is subsecuently
used as a storage image in a compute shader, the image layout must be transitioned
to VK_IMAGE_LAYOUT_GENERAL. Such a use case realized as a subpass dependency is
demonstrated in chapter 5.2 in figure 5.5. [16] [14]

3.15 Synchronization
Since Vulkan is a low-level hardware abstraction and does not provide any synchroniza-
tion mechanism by default, the programmer must handle any synchronization explicitly.
The command vkQueueWaitIdle waits for a specific queue to become idle and is a very
straightforward method to perform synchronization, but in most cases queues rarely
become idle. Further, it is often necessary to synchronize commands during queue
execution. For convenient synchronization, Vulkan offers four distinct synchronization
objects, which are listed below. [16]

3.15.1 Fences
Fences provide synchronization between host and device. A VkFence reference can be
submitted together with a command buffer to a queue. The VkFence object signals to
the host the completion of the command buffer execution. [16]

3.15.2 Events
Events (VkEvent) provide finer-grained snychronization than fences between host and
device. While fences are only capable to signal the completion of a command buffer
execution, events can be used to synchronize the progress of a command buffer execution
by placing a vkCmdSetEvent command at a specific position in the command buffer.
Further, by placing a vkCmdWaitEvents the command buffer execution can wait on one
ore more events to become signalled (by the host or the device). [16]

3.15.3 Semaphores
Semaphores (VkSemaphore) offer a synchronization mechanism between command buffer
submissions within a single queue and across multiple queues. Even though command
buffer submissions to a single queue are executed in the preserved order they were
submitted, GPUs parallelize the process of batches of command buffer executions as
much as possible. With semaphores, the processing of one or multiple command buffers
can be postponed at any specific pipeline stage until another command buffer (or batch
of command buffers) has finished or reached a specific pipeline stage at the same or any
other queue. [16]

25



3.15.4 Barriers
Barriers are the most extensive synchronization objects in Vulkan and provide exe-
cution and memory synchronization between sets of commands within a single com-
mand buffer execution. Barriers can be placed within a command buffer with the
vkCmdPipelineBarrier command. As an example, if one command execution depends
on the completion or a specific progress level of another command execution, a proper
vkCmdPipelineBarrier between these two commands ensures synchronization based
on the execution and/or memory dependencies specified in vkCmdPipelineBarrier.
A memory dependency snychronizes read and write access to images or buffers while
an execution dependency ensures a specific sequence of command executions. As
mentioned in the section about render passes (3.8), the subpass dependencies and
image layout transitions can be explicitly specified to induce the driver doing implicit
synchronizations. These synchronizations are nothing more than barriers which are
implicitly placed by the driver. [16] [25]

Figures 3.7 and 3.8 show two different use case examples of barriers.

Figure 3.7: Slow Barrier Example [25]
Figure 3.7 shows two pipelines where the right pipeline is waiting on the left
pipeline via a pipeline barrier. The pipeline barrier is specified with bottom
stage (VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT) as source stage and top stage
(VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT) as destination stage, which means that
the waiting pipeline starts its execution not until the left pipeline has finished its
whole processing.

26



Figure 3.8: Optimal Barrier Example [25]
Figure 3.8 shows similar to the previous figure two pipelines where the right one
is waiting on the left one. The pipeline barrier is specified with vertex shader
(VK_PIPELINE_STAGE_VERTEX_SHADER_BIT) as source stage and compute shader
(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT) as destination stage, which means that
the waiting pipeline continues its execution at the compute shader stage not until
the left pipeline has finished its processing of the vertex shader stage. For instance,
if the compute shader of the right pipeline wants to read from a resource the vertex
shader of the left pipeline writes to, this would be an optimal barrier, since in this
case it is not necessary to wait on subsequent pipeline stages to be finished.

3.16 SPIR-V Shaders
Since Vulkan drivers don’t provide a high-level shader language compiler, all shader
code must be compiled to SPIR-V files in advance in order to be used by a Vulkan
application. SPIR-V is an intermediate low-level language used by Vulkan drivers for
assemble shader programs on the GPU. Since SPIR-V is a low-level language, it is hard
to write SPIR-V shader manually. To overcome this issue the VulkanSDK provides a
tool for compiling high-level shader code (like GLSL) into SPIR-V shader files. [16] [5]

Figure 3.9: SPIR-V [26]

27



Chapter 4

The Case Study Scenario

This chapter outlines an abstract and theoretical perspective of the simulation scenario
used in the case study and deployed by the developed Vulkan engine.

The case study simulation is rendered in terms of a successive image synthesis by
the use of deferred shading along with antialiasing and post processing bloom. Entities
of the simulation are:

• FFT generated ocean

• Atmosphere mapped onto a skydome

• Sun

The FFT generated ocean is based upon the GPGPU implementation design elaborated
in the context of the research thesis Realtime GPGPU FFT Ocean Water Simulation
along with the equation

h(n,m, t) = 1
N ·N

(−1)n
N−1∑
k=0

[
(−1)m

N−1∑
l=0

h̃(k, l, t) exp
(
i
2πml
N

)]
exp

(
i
2πnk
N

)
(4.1)

derived from the statistical, emperically-based oceanographic spatial spectrum of the
ocean surface noted in the paper Simulating Ocean Water [2] [27].

The stages for successively synthesizing the presentation image are delineated in the
following sections.

28



4.1 Deferred Shading with MSAA
The first stage of the image synthesis is deferred shading with multisample anitaliasing1

(MSAA). Deferred shading separates scene lighting from geometry processing by applying
light calculations in screen-space. The advantage of deferred shading is that lots of
light sources in the scene will impair the performance trivially. In order to perform
screen-space lighting, the scene geometry and color values are rendered by a first render
pass with multiple render targets into dedicated images resp. framebuffer attachments.
These images, called g-buffer, are processed by a subsequent render pass to obtain a
lighted and shaded scene image. To apply MSAA along with deferred shading, the
scene must be rendered with enabled hardware-antialiasing into a multisample g-buffer.
[28]

The g-buffer and the depth buffer of an example scene is shown in figure 4.1.

Figure 4.1: The top left albedo image buffer contains the raw color values of the
scene. The further two elements of the g-buffer are normals and world positions of
the scene geometries. The bottom right depth image is a linearized visualization of
the framebuffer depth attachment. The depth buffer is needed for shadow mapping,
which is not applied in the case study simulation though. Since no lighting is applied
to the skydome, no normal and world position values are written to g-buffer for it.

1Pixel artifact reduction

29



A non-trivial problem with deferred shading is that multisampling must be explicitly
considered during light calculations in screen-space to preserve hardware-antialiasing.
Therefore, lighting must be calculated for each sample of a multisample pixel from the
g-buffer with afterwards averaging the results of the lighted samples to obtain the final
antialiased color value. To save performance it is convenient to consider all samples
of a pixel in lighting calculations only on sharp edges where aliasing occurs. Hence,
these edges with potential aliasing must be detected in order to apply the deferred
shading render pass. In a separate render pass, the aliased pixels in the scene image
are detected and stored in the red channel of a further image. These detected aliased
pixels are called the sample coverage mask of the scene. The sample coverage mask is
obtained by evaluating the g-buffer to find discontinuities between position samples of a
pixel. Discontinuities are found by computing the distances between the sample position
vectors. The distances are subsequently cumulated and checked against a predefined
threshold. If the cumulated distances are above the threshold a potential aliased pixel
is detected. To reduce the complexity of the detection of discontinuities the distances
between the position samples are not computed as a complete graph O(n2) but rather
as an arbitrary path O(n). For more accuracy discontinuities between normals can be
evaluated additionally, but this is omitted in this thesis case study simulation though.
Better sample coverage accuracy results in a faster deferred shading (less false positives:
when pixels are detected as not aliased, which would otherwise be detected as aliased)
and in more qualitative deferred shading (less false negatives: when pixels are detected
as aliased, which would otherwise be detected as not aliased). However, more accuracy
leads to a more expensive sample coverage mask generation. [29] [28]

Figure 4.2 shows the image of the sample coverage mask to the related g-buffer from
figure 4.1.

Figure 4.2: Sample Coverage Mask Image

30



The deferred lighted and shaded scene image from the g-buffer (4.1) and the sample
coverage mask (4.2) with a directional sunlight is shown in figure 4.3. However, the sun
itself is not visible yet and added to the scene in the transparency blending stage.

Figure 4.3: Deferred Lighting Scene

4.2 Transparency Blending
One problem that occurs along with deferred shading is that objects located behind
transparent objects are not considered. A further problem is that MSAA along with
deferred shading cannot properly applied to transparent objects and causes pixelations.
One possible solution to overcome these issues is to render transparent scene objects
into a separate image with forward lighting and blend it afterwards with an appropriate
alpha blending function on top of the deferred lighted and shaded scene image. [28]

The case study simulation possesses one single transparent object, the sun, which
is a simple point sprite object with the texture shown in figure 4.4. Even though the
sun is always located between any opaque object and the atmospheric skydome, it is
blended onto the scene in the same manner as any transparent object lying between
opaque scene objects. The depth values of the opaque scene image and the transparent
scene image are compared against each other and afterwards the transparent image is
blended onto the opaque scene image by the color and alpha blending equations

RGB = RsGsBs · As +RdGdBd · (1 − Ad) (4.2)
and

A = As · 1 + Ad · 0 , (4.3)
where RsGsBsAs represents the RGBA-channel of the transparent image (source) and
RdGdBdAd represents the RGBA-channel of the opaque image (destination). [14]

31



Figure 4.4: Sun texture created with the graphics editor GIMP.

Figure 4.5 shows the transparency scene image blended as a layer onto the deferred
lighted and shaded ocean scene from 4.3. The transparency scene contains the sun
object with world position derived from the sunlight direction applied in the deferred
shading stage.

Figure 4.5: Transparency Scene Composition

32



4.3 FXAA
Fast approximated Antialiasing (FXAA) is a post-processing GPGPU antialiasing
technique separated from multisample hardware-antialiasing. Since MSAA influences
the perfomance often badly, FXAA achieves in some cases a sufficient antialiasing result
with a much better performance than MSAA. However, for almost perfect antialiasing
MSAA and FXAA can be applied together. The FXAA algorithm employed by the
developed Vulkan engine is based on the Nvidia whitepaper FXAA [30].

Figure 4.6 shows the scene from 4.5 with 8x MSAA and FXAA. The case study
simulation uses by configuration between 2x and 8x MSAA with enabled or disabled
FXAA. Figure 4.7 shows the visual differences of various antialiasing configurations.

Figure 4.6: FXAA Scene Image

33



Figure 4.7: The graphic shows a small section of the scene from figure 4.6 with
ascending antialiasing qualities from top left to bottom right.

34



4.4 Bloom
After the FXAA is processed the image is ready to apply a chain of post-processing
effects on it as the last stage of the scene image synthesis. The case study simulation
uses a post-processing chain with a single element, a bloom effect. Bloom is an effect
where bright light areas bleed over neighboured dark areas. The following presented
approach of post-processing bloom generation is inspired by Nvidia’s GPU Gems -
Chapter 21. Real-Time Glow [31].

In order to apply bloom effect, a brightness image as shown in figure 4.8 is generated
from the scene image with the RGB color’s relative luminance

RGBluminance = RGBcolor ·

 0.2126
0.7152
0.0722

 (4.4)

as definced at W3C - Relative luminance [32]. Afterwards the luminance is squared
and multiplied with the RGB color to obtain the RGB’s brightness:

RGBbrightness = RGBcolor · (RGBluminance)2 . (4.5)

Figure 4.8: Brightness Scene Image

A Gaussian blur filter with kernelsize = 9 and σ = 1 is applied to the brightness
image with decreasing resolutions as a 1-dimensional Gaussian blur filter in first
horizontal and subsequently vertical direction. Figure 4.9 shows the 1-dimensional
horizontal gaussian filtered brightness images with decreasing resolutions (resolution of
the original image divided by 2, 4, 8, 16).

35



Figure 4.9: Horizontal Gaussian Bloom Blur

Afterwards a 1-dimensional vertical Gaussian filter is applied to the horizontal
Gaussian filtered images to obtain the 2-dimensional Gaussian blurred brightness
images shwon in figure 4.10. These Gaussian filtered brightness images are subsequently
additively blended to obtain the bloom scene image depicted in figure 4.11.

Figure 4.10: Vertical Gaussian Bloom Blur

36



Figure 4.11: Bloom Scene Image

Finally the blurred bloom scene image is added to the scene image to obtain a bloom
effect as depicted in figure 4.12.

Figure 4.12: Bloom Effect Composition

37



4.5 Dynamic Panel Overlay
A dynamic panel overlay is rendered on top of the synthesized scene image. The overlay
can be individually customized by a set of transparent or opaque color panels, text
panels and image panels. The color and alpha blending functions for the overlay panels
are the same equations as 4.2 and 4.3. Figure 4.13 shows a panel overlay that displays
the fps1 and the CPU load with the Vulkan logo [33].

Figure 4.13: Panel Overlay

Blending the panel overlay onto the synthesized scene results in the image shown in
figure 4.14.

Figure 4.14: Blended Panel Overlay
1Frames per second

38



Chapter 5

Engine Design and Implementation

This chapter presents the design along with fundamental implementation details of the
Vulkan engine elaborated in the scope of this thesis. The Vulkan engine is embedded
into the Java graphics engine Oreon Engine [1] developed in the context of the research
elaboration Realtime GPGPU FFT Ocean Water Simulation [2]. Oreon Engine already
provides a proper OpenGL implementation of the simulation approach from last chapter
which is used for the peformance comparison of Vulkan and OpenGL in chapter 6.

The process of the image synthesis presented in chapter 4 is subdivided into a
batch of command buffers. The snychronization of critical sections between consecutive
command buffers is done with semaphores and (rarely) fences. Pipeline barriers are
used for synchronization between commands inside of command buffers

For instance, a critical section arises between g-buffer and sample coverage mask
generation. The sample coverage mask generation must be postponed until the render
operation of the g-buffer has finished. This synchronization is done with a semaphore,
since g-buffer and sample coverage mask are generated by two separate consecutive
command buffers. Further, the deferred shading pass cannot start until the sample
coverage mask generation has finished. Since sample coverage and deferred shading
passes are executed in one common command buffer, the synchronization is done with a
pipeline barrier placed between sample coverage and deferred shading compute pipelines.

Figure 5.1 depicts a flow diagram of the command buffer execution sequence with
its synchronization. The following sections give a deeper insight into the individual
block elements shown in figure 5.1.

39



Figure 5.1: White blocks in the flow diagram represent command buffers. The
grey block »Water Resources« conists of multiple synchronized command buffers.
Execution flow along with synchronization is represented by red arrows with labels
indicating which synchronization object is used. Black arrows represent execution
flow without any synchronization.

40



5.1 Ocean Resources
The resources for the ocean such as displacement-, reflection- and refraction maps are
generated in multiple steps with various command buffers. Figure 5.2 provides an
overview of the command buffer execution sequence of the ocean resources generation.
The particular block elements of figure 5.2 are described in the following subsections.

Figure 5.2: The flow diagram caption is similar to figure 5.1. The grey block
»Displacement Maps« consists of multiple synchronized command buffers

41



5.1.1 Displacement Maps
The process of the displacement maps generation for the ocean surface is based on
the approach from Realtime GPGPU FFT Ocean Water Simulation [2]. The FFT’s
for generating the displacement maps in x-, y- and z-direction are wrapped into one
single command buffer. The h̃(k, t) components are previously generated by a separate
command buffer as depicted in figure 5.3. For synchronization, the FFT command
buffer waits on a VkSemaphore which is signalled after the h̃(k, t) command buffer
execution has been finished.

Figure 5.3: FFT Displacement Maps Generation

42



Listing 5.1 shows a pseudocode of the FFT command buffer record procedure with
simplified input paramaters for the command buffer record functions, where "..." is a
placeholder for trivial or irrelevant parameters.

1 // start command buffer record
2 vkBeginCommandBuffer(...);
3
4 // memory barrier structure
5 VkMemoryBarrier barrier = {
6 .sType(VK_STRUCTURE_TYPE_MEMORY_BARRIER)
7 .srcAccessMask(VK_ACCESS_SHADER_WRITE_BIT)
8 .dstAccessMask(VK_ACCESS_SHADER_READ_BIT)};
9

10 // bind butterfly pipeline
11 vkCmdBindPipeline(..., VK_PIPELINE_BIND_POINT_COMPUTE, butterflyPipeline);
12 // horizontal butteflies
13 for i=0 to i<log2N do {
14 // bind push constants
15 vkCmdPushConstants(..., VK_SHADER_STAGE_COMPUTE_BIT, ...,

horizontalPushConstants[i]);
16 // dx butterfly
17 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dxButterflyDescriptorSet, ...);
18 vkCmdDispatch(...);
19 // dy butterfly
20 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dyButterflyDescriptorSet, ...);
21 vkCmdDispatch(...);
22 // dz butterfly
23 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dzButterflyDescriptorSet, ...);
24 vkCmdDispatch(...);
25 // pipeline memory barrier
26 vkCmdPipelineBarrier(..., VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, ..., barrier, ...);
27 }
28 // vertical butteflies
29 for i=0 to i<log2N do {
30 // bind push constants
31 vkCmdPushConstants(..., VK_SHADER_STAGE_COMPUTE_BIT, ...,

verticalPushConstants[i]);
32 // dx butterfly
33 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dxButterflyDescriptorSet, ...);
34 vkCmdDispatch(...);
35 // dy butterfly
36 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dyButterflyDescriptorSet, ...);
37 vkCmdDispatch(...);
38 // dz butterfly
39 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

butterflyPipelineLayout, ..., dzButterflyDescriptorSet, ...);
40 vkCmdDispatch(...);
41 // pipeline memory barrier
42 vkCmdPipelineBarrier(..., VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, ..., barrier, ...);
43 }

43



44 // bind inversion pipeline
45 vkCmdBindPipeline(..., VK_PIPELINE_BIND_POINT_COMPUTE, inversionPipeline);
46 // bind inversion push constants
47 vkCmdPushConstants(...,VK_SHADER_STAGE_COMPUTE_BIT, ...,

inversionPushConstants);
48 // dx inversion
49 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

inversionPipelineLayout, ..., dxInversionDescriptorSet, ...);
50 vkCmdDispatch(...);
51 // dy inversion
52 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

inversionPipelineLayout, ..., dyInversionDescriptorSet, ...);
53 vkCmdDispatch(...);
54 // dz inversion
55 vkCmdBindDescriptorSets(..., VK_PIPELINE_BIND_POINT_COMPUTE,

inversionPipelineLayout, ..., dzInversionDescriptorSet, ...);
56 vkCmdDispatch(...);
57
58 // finish command buffer record
59 vkEndCommandBuffer(...);

Listing 5.1: FFT Command Buffer Recording

The vkBeginCommandBuffer (l. 2) and vkEndCommandBuffer (l. 59) define start and
end of the command buffer record procedure, respectively. The horizontal and vertical
butterfly stages recordings are wrapped into two separate for-loops (ll. 13-27, ll. 29-43).
The horizontal and vertical butterfly compute operations all use the same pipeline which
is bound once with vkCmdBindPipeline (l. 11). VK_PIPELINE_BIND_POINT_COMPUTE
indicates that the record command is dealing with a compute pipeline. The proper push
constants block of the related stage and direction is bound with vkCmdPushConstants
at the beginning of each horizontal and vertical for-loop iteration (l. 15, l. 31).
The VK_SHADER_STAGE_COMPUTE_BIT enumeration configures the usage of the push
constants in the compute shader stage of the pipeline. The push constants data
blocks consists of the current stage index (i or j), the pingpong value (i+j mod 2)
and a flag indicating horizontal or vertical butterflies (0 for horizontal, 1 for vertical).
The dx-, dy- and dz-butterfly operations uses individual descriptor sets, which are
bound with vkCmdBindDescriptorSets in order to execute the compute operation with
vkCmdDispatch. The descriptor sets reference the corresponding pingpong images and
the twiddle indices image as storage images (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE).
After each horizontal and vertical for-loop iteration a pipeline barrier command is
recorded (l. 26, l. 42) to prevent the usage of an image with the butterfly operation
results in the subsequent stage prior to the butterfly operation executions of the
previous stage has been finished. The VK_PIPELINE_STAGE_COMPUTE_SHADER_BITs
for both source and destination indicates that the pipeline executions before and
after the pipeline barrier are synchronized both in the compute shader stage. The
VkMemoryBarrier structure (l. 5) passed to both horizontal and vertical pipeline barrier
commands specifies that the source (previous) pipeline is synchronized at shader write
access (VK_ACCESS_SHADER_WRITE_BIT) while the destination (subsequent) pipeline
is synchronized at shader read access (VK_ACCESS_SHADER_READ_BIT). The inversion
operations use a further compute pipeline (l. 45) and a push constants block (l. 47).
The inversion push constants consist of the resolution (N) and the final pingpong value.
Additionally, the dx-, dy- and dz-inversion operations use separate descriptor sets. [14]

44



5.1.2 Dy-Normalmap and Mipmap Generation
It is sufficient to generate the normal map of the dy-displacement map, since only
normals of the vertical displacement (dy-FFT) are token into account by generating
the ocean surface normals for the normal buffer at g-buffer render stage. The normal
map is created with a compute pipeline by a separate command buffer. The mipmap of
the normal map is generated by a subsequent command buffer which is synchronized
with a fence to the normal map generation.

5.1.3 Scene Reflection/Refraction and Deferred Shading
For proper water reflection and refraction, the scene is rendered two times into a
g-buffer with half resolution of the display. Prior to the reflection render pass the
scene is mirrored at the water surface. The reflection and refraction render command
buffers are recorded by wrapping the scene objects as secondary command buffers into a
single primary command buffer, respectively. The reflection/refraction scene rendering
with a primary and multiple secondary command buffers is similar to the opaque
and transparent scene g-buffer rendering. Detailed explanations on how to render
the scene with a primary command buffer into a g-buffer as framebuffer attachments
follow in section 5.2. The reflection and refraction g-buffers are used by subsequent
deferred shading passes to obtain the water reflection and refraction maps. Finally,
mipmaps of the reflection/refraction maps are generated by two separate command
buffer executions similar to the normalmap mipmap generation in 5.1.2. However, the
case study simulation does not contain any objects which are refracted by the water
surface since skydome and sun are above the ocean surface and only reflected by the
water.

5.2 Opaque Scene G-Buffer
The opaque scene g-buffer is rendered by the execution of a primary command buffer
which wraps the opaque scene objects as a list of secondary command buffer references
into a single command buffer. Secondary command buffers are created by specifying
VK_COMMAND_BUFFER_LEVEL_SECONDARY instead VK_COMMAND_BUFFER_LEVEL_PRIMARY
for primary command buffers at VkCommandBuffer creation. Further, the
vkBeginCommandBuffer function called within the scope of a secondary command
buffer recording needs the same framebuffer and render pass references (enveloped by a
VkCommandBufferInheritanceInfo object together with some other optional configu-
ration parameters which are not relevant here) as specified in vkCmdBeginRenderPass
in the related primary command buffer recording procedure. [14]

45



Listing 5.2 shows a pseudocode of the primary command buffer record procedure
for rendering the opaque scene g-buffer.

1 // start primary command buffer record
2 vkBeginCommandBuffer(...);
3 vkCmdBeginRenderPass(...,

VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);
4 vkCmdExecuteCommands(..., &SecondaryCommandBuffers);
5 vkCmdEndRenderPass(...);
6 // finish primary command buffer record
7 vkEndCommandBuffer(...);

Listing 5.2: Primary Command Buffer Record Procedure

Previously recorded secondary command buffers are specified as an array of refer-
ences at the vkCmdExecuteCommands command (l. 4). The render pass used by
the secondary command buffers is initiated with vkCmdBeginRenderPass by pass-
ing VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS (l. 3) and terminated with
vkCmdEndRenderPass. [14]

Listing 5.3 shows a record procedure of a secondary command buffer with graphics
pipeline and indexed drawing.

1 // start secondary command buffer record
2 vkBeginCommandBuffer(...);
3 // bind push constants
4 vkCmdPushConstants(...);
5 // bind graphics pipeline
6 vkCmdBindPipeline(...);
7 // bind vertex buffer
8 vkCmdBindVertexBuffers(...);
9 // bind index buffer

10 vkCmdBindIndexBuffer(...);
11 // bind descriptor sets
12 vkCmdBindDescriptorSets(...);
13 // indexed drawing
14 vkCmdDrawIndexed(...);
15 // finish secondary command buffer record
16 vkEndCommandBuffer(...);

Listing 5.3: Secondary Command Buffer Record Procedure

46



The framebuffer with the g-buffer attachments is shown in figure 5.4 and the related
render pass is graphically illustrated with a comprehensive explanation in figure 5.5.

Figure 5.4: Four attachments are attached to the framebuffer. The color at-
tachments 0, 1 and 2 are the albedo, normal and world position buffer of the
g-buffer, respectively. Attachment 0 and 2 are specified with the enumeration
VK_FORMAT_R16G16B16A16_SFLOAT which means that the images have the format
of a 16 bit RGBA-channel interpreted as a signed float type by the Vulkan driver.
Attachment 1 has a 32 bit RGBA-channel (VK_FORMAT_R32G32B32A32_SFLOAT). At-
tachment 3 is a depth attachment with a 32 bit depth-channel also interpreted as a
signed float (VK_FORMAT_D32_SFLOAT). [14]

47



Figure 5.5: Render Pass Diagram

48



Figure 5.5: The render pass uses all four attachments of the framebuffer
with 8 samples (VK_SAMPLE_COUNT_8_BIT). In order to define multisample at-
tachments in the render pass, the images of the related attachments must have
been created as multisample images. The initial layouts of the attachments at
the beginning of the render pass are undefined (VK_IMAGE_LAYOUT_UNDEFINED)
and have a general layout (VK_IMAGE_LAYOUT_GENERAL) at the end of the ren-
der pass since the attachments are used by the subsequent stage as storage im-
ages. VK_LOAD_OP_CLEAR and VK_STORE_OP_STORE indicate the cleanup of the
attachments at the begin and the storing at the end of the render pass. The
render pass possesses one subpass which uses the color attachments as render
targets in the fragment shader and the depth attachment as a buffer for stor-
ing the depth test results. For this usage, the attachments must be specified
with proper layouts which is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for the
color attachments and VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for
the depth attachment. Additionally, subpass dependencies must be specified for
implicit synchronization. Since there is only one subpass, two dependencies are
sufficient to synchronize the subpass with the outside of the render pass. Sub-
pass dependency 0 synchronizes subpass 0 with operations prior to the render
pass (source subpass VK_SUBPASS_EXTERNAL and destination subpass 0). In con-
trast, subpass dependency 1 synchronizes subpass 0 with operatins after the render
pass (source subpass 0 and destination subpass VK_SUBPASS_EXTERNAL). Further,
it is specified at which stages the synchronization takes place. At subpass depen-
dency 0 the source stage mask is VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT while
the destination stage mask is VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
which means that the synchronization occurs at the end of a previous pipeline
and the stage of the subpass related pipeline where the final color values
are generated. Accordingly, subpass dependency 1 synchronizes the final
color generating pipeline stage of subpass 0 with the compute shader stage
(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT) of a following pipeline outside of the
render pass, since the subsequent pipeline (sample coverage pipeline) reads the
attachments in a compute shader. In addition, it is specified which access oper-
ations are considered at synchronization. At subpass dependency 0 the source
access mask is set to VK_ACCESS_MEMORY_READ_BIT meaning that all kind of memory
read operations of previous pipelines are considered. The destination access mask
of subpass dependency 0 is specified as VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT which synchronizes subpass
0 at color/depth attachment write access. At subpass dependency 1 the ac-
cess masks are accordingly set to VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT as source access snychroniza-
tion in the pipeline of subpass 0 and VK_ACCESS_SHADER_READ_BIT as destination
access synchronization, since the subsequent pipeline applies read-access to the
attachments as mentioned before in a compute shader. [14]

49



5.3 Sample Coverage and Deferred Shading
The sample coverage and deferred shading stages are encapsulated in a single command
buffer. Sample coverage and deferred shading passes are defined as compute pipelines
with a pipeline memory barrier amongst both dispatches.

5.4 Transparent Scene and Blending
The transparent scene objects are rendered similar to the opaque scene objects with a
primary command buffer and a separate framebuffer. Since forward lighting is used, the
framebuffer does not have a g-buffer attachment but instead a single color attachment.
The blending of the deferred lighted and shaded opaque scene and the transparent scene
is done in a further command buffer.

5.5 FXAA and Post Processing
The post processing bloom effect and FXAA is wrapped in one command buffer with a
pipeline memory barrier similar to the barriers in listing 5.1 between FXAA and bloom
pipelines. Further pipeline memory barriers are used to synchronize the different bloom
processing stages.

5.6 Panel Overlay
The panel overlay is rendered by wrapping all the overlay elements as secondary
command buffers in one primary command buffer similar to the opaque and transparent
scene command buffer. Afterwards the panel overlay image is blended with an alpha
blending function on top of the final synthesized scene image.

5.7 Presentation
The presentation engine uses a swapchain with VK_PRESENT_MODE_MAILBOX_KHR pre-
sentation mode. For each swapchain image, a VkImageView is created and attached to
a separate VkFrameBuffer object. Further, the same number of command buffers are
recorded for rendering into one framebuffer, respectively. When a swapchain image is
acquired with vkAcquireNextImageKHR the command buffer with the related frame-
buffer is submitted to the presentation queue. The acquisition of an unused swapchain
image and the submission of a command buffer that draws to that image is synchronized
with a respective semaphore.

50



Chapter 6

Case Study: OpenGL vs. Vulkan

The case study simulation scenario presented in chapter 4 was testet against different
antialiasing configurations from figure 4.7 on a system with an Intel Core i5-6600k,
16 GB RAM and the Titan Xp. The operating system is Windows 10. The camera
and level of detail settings are exactly the same for both Vulkan and OpenGL with
every antialiasing configuration. The FFT’s have a resolution of 256x256. On a time
window of 20 seconds the fps, CPU load and GPU load were measured as performance
indicators. The fps were simply recorded by the rendering loop of the engine. CPU
load was measured with the tool Performance Monitor included in Windows 10 while
GPU load was measured with the tool GPU-Z. The following diagrams contrasts the
measured average values of the simulation executed with Vulkan and OpenGL.

51



Figure 6.1: 2x MSAA - FPS

Figure 6.2: 2x MSAA - CPU Load

Figure 6.3: 2x MSAA - GPU Load

52



Figure 6.4: 2x MSAA and FXAA - FPS

Figure 6.5: 2x MSAA and FXAA - CPU Load

Figure 6.6: 2x MSAA and FXAA - GPU Load

53



Figure 6.7: 4x MSAA - FPS

Figure 6.8: 4x MSAA - CPU Load

Figure 6.9: 4x MSAA - GPU Load

54



Figure 6.10: 4x MSAA and FXAA - FPS

Figure 6.11: 4x MSAA and FXAA - CPU Load

Figure 6.12: 4x MSAA and FXAA - GPU Load

55



Figure 6.13: 8x MSAA - FPS

Figure 6.14: 8x MSAA - CPU Load

Figure 6.15: 8x MSAA - GPU Load

56



Figure 6.16: 8x MSAA and FXAA - FPS

Figure 6.17: 8x MSAA and FXAA - CPU Load

Figure 6.18: 8x MSAA and FXAA - GPU Load

57



Chapter 7

Evaluation

The measured performance indicators presented in the diagrams in chapter 6 expose
major advantages of Vulkan over OpenGL. At the configuration with 2x MSAA, Vulkan
reaches 91% more fps than OpenGL (figure 6.1). With increasing antialiasing con-
figurations, the advantage of Vulkan decreases. For instance, at 4x MSAA Vulkan
reaches 82% (figure 6.7) more fps and at the maximum antialiasing configuration with
8x MSAA and FXAA the advantage is 31% (figure 6.16). However, in consideration
of the CPU load difference of Vulkan and OpenGL, the advantages of Vulkan become
more significant. The CPU load of the Vulkan simulation moves constantly around
10% (± 1.4) while the OpenGL simulation constantly demands around 38% of the CPU
power (± 1.5). Hence, OpenGL requires three to four times as much CPU capacities as
Vulkan which is a significant difference. By the fact that Vulkan reaches 31% to 82%
more performance by just consuming 25% of the CPU load compared to OpenGL, it
can be considered as proven that Vulkan is more powerful and effective than OpenGL
as described in chapter 2. Further, under consideration of the GPU load measurements,
it can be derived that Vulkan is able to supply work to the GPU more effectively, since
the GPU load of Vulkan is constantly higher than OpenGL. Though with increasing
antialiasing quality, the GPU load difference decreases. While the GPU load difference
is 16.8% at 2x MSAA (figure 6.3), at 8x MSAA with FXAA the difference is only 2.8%
(figure 6.18). A possible explanation to this is, that the shader executions become more
complex for high antialiasing configurations. As a consequence, the GPU spends more
time with executing single shader programs. However, during shader execution, it does
not matter if Vulkan or OpenGL is used though. This is possibly the same reason
why the fps gap between Vulkan and OpenGL decreases for increasing antialiasing
configurations.

58



Appendix

A Measured Simulation Data - OpenGL

t in s fps CPU load in % GPU load in %
1 175 39.9 49
2 179 36.4 51
3 180 44.1 51
4 179 41.8 49
5 179 39.9 48
6 178 35.6 49
7 179 41.0 50
8 177 37.5 52
9 175 39.5 49
10 177 38.7 49
11 179 40.3 51
12 177 41.8 50
13 180 34.0 50
14 178 42.2 50
15 177 36.7 52
16 177 39.7 51
17 177 39.1 51
18 180 36.4 51
19 177 39.5 50
20 175 42.6 50

Table 1: 2x MSAA - OpenGL

t in s fps CPU load in % GPU load in %
1 175 39.8 48
2 175 38.7 50
3 175 41.4 50
4 177 38.3 50
5 176 39.9 51
6 180 35.6 50
7 174 40.6 49
8 176 39.1 49
9 179 39.5 50
10 176 38.4 51
11 176 42.2 50
12 175 36.8 51
13 174 35.2 50
14 175 38.7 50
15 172 41.2 52
16 173 48.5 46
17 175 40.3 51
18 174 39.1 51
19 177 39.9 51
20 175 36.3 50

Table 2: 2x MSAA and FXAA - OpenGL

59



t in s fps CPU load in % GPU load in %
1 164 34.4 53
2 161 35.2 54
3 166 38.3 52
4 160 36.4 54
5 166 37.9 55
6 162 35.6 53
7 163 39.1 53
8 162 36.0 54
9 166 35.2 54
10 163 38.6 55
11 165 42.2 52
12 163 41.4 53
13 161 41.8 52
14 161 44.9 55
15 165 39.5 53
16 161 37.1 54
17 164 41.1 54
18 162 39.9 51
19 162 39.8 53
20 162 39.9 54

Table 3: 4x MSAA - OpenGL

t in s fps CPU load in % GPU load in %
1 163 38.3 54
2 163 38.3 54
3 162 49.1 54
4 163 34.0 55
5 162 38.7 54
6 162 38.7 55
7 165 40.7 54
8 162 35.2 52
9 160 40.9 55
10 161 35.2 54
11 161 41.4 48
12 162 51.6 55
13 160 35.2 54
14 161 40.3 54
15 162 38.3 53
16 158 36.7 54
17 162 34.0 55
18 162 38.7 54
19 161 42.6 54
20 162 39.9 53

Table 4: 4x MSAA and FXAA - OpenGL

60



t in s fps CPU load in % GPU load in %
1 130 36.3 60
2 130 35.6 61
3 128 33.6 59
4 128 36.4 60
5 129 35.6 60
6 133 36.0 59
7 130 37.1 60
8 129 38.7 60
9 129 32.4 61
10 131 31.3 60
11 130 45.3 59
12 130 36.8 61
13 129 34.1 61
14 130 39.5 60
15 132 37.1 60
16 129 35.9 62
17 129 35.5 60
18 128 39.1 62
19 131 36.8 60
20 130 38.3 61

Table 5: 8x MSAA - OpenGL

t in s fps CPU load in % GPU load in %
1 128 32.5 59
2 128 36.0 61
3 128 37.1 60
4 130 36.4 61
5 132 34.4 59
6 129 33.7 59
7 129 39.1 62
8 129 36.0 61
9 130 34.0 60
10 127 49.2 60
11 126 37.1 60
12 126 36.4 63
13 129 41.4 60
14 128 32.5 61
15 128 36.8 61
16 127 41.4 60
17 127 38.3 60
18 128 34.8 60
19 128 40.6 59
20 127 33.3 61

Table 6: 8x MSAA and FXAA - OpenGL

61



B Measured Simulation Data - Vulkan

t in s fps CPU load in % GPU load in %
1 343 9.1 65
2 343 11.7 67
3 345 11.7 67
4 340 9.0 67
5 328 8.6 68
6 341 8.6 68
7 341 9.4 67
8 343 11.3 67
9 344 10.1 67
10 342 8.6 66
11 342 9.8 67
12 341 7.9 67
13 341 6.3 68
14 339 9.0 67
15 337 7.9 66
16 341 8.2 67
17 338 15.7 68
18 339 9.8 68
19 341 8.2 67
20 339 9.5 66

Table 7: 2x MSAA - Vulkan

t in s fps CPU load in % GPU load in %
1 316 14.4 65
2 322 5.5 65
3 321 8.6 65
4 320 9.5 67
5 326 6.3 63
6 323 7.4 66
7 321 10.6 68
8 321 7.5 66
9 319 9.8 66
10 321 11.4 66
11 318 7.1 65
12 312 7.4 65
13 313 9.4 64
14 316 5.9 64
15 320 10.2 67
16 321 9.1 65
17 315 9.4 64
18 318 7.8 64
19 321 6.3 66
20 311 9.0 65

Table 8: 2x MSAA and FXAA - Vulkan

62



t in s fps CPU load in % GPU load in %
1 396 5.9 70
2 392 7.0 70
3 300 9.0 70
4 298 7.8 69
5 293 5.5 70
6 300 8.3 70
7 299 9.0 70
8 300 13.3 69
9 296 9.0 71
10 297 14.1 71
11 299 7.0 71
12 295 7.8 70
13 298 10.2 71
14 293 9.5 71
15 295 8.6 71
16 300 13.7 72
17 295 8.7 71
18 293 11.7 71
19 302 10.5 71
20 300 11.3 71

Table 9: 4x MSAA - Vulkan

t in s fps CPU load in % GPU load in %
1 275 9.8 70
2 281 10.6 69
3 273 7.5 70
4 280 12.9 69
5 282 10.2 68
6 282 8.6 69
7 275 6.3 66
8 279 7.1 67
9 278 7.9 70
10 273 8.7 69
11 273 5.5 69
12 276 8.6 66
13 270 7.4 67
14 272 9.4 66
15 271 8.3 66
16 267 17.6 68
17 263 7.8 65
18 269 9.4 69
19 270 8.3 69
20 280 5.9 66

Table 10: 4x MSAA and FXAA - Vulkan

63



t in s fps CPU load in % GPU load in %
1 178 10.2 62
2 178 11.7 65
3 179 6.6 63
4 182 9.4 68
5 178 10.2 68
6 178 11.3 64
7 177 15.3 62
8 171 10.5 65
9 179 14.9 65
10 171 8.6 66
11 183 14.5 66
12 178 10.6 68
13 199 10.6 72
14 194 7.9 75
15 178 9.8 67
16 184 10.6 69
17 175 8.6 65
18 173 7.1 62
19 183 13.8 66
20 175 8.2 62

Table 11: 8x MSAA - Vulkan

t in s fps CPU load in % GPU load in %
1 168 7.8 70
2 161 12.5 63
3 168 11.0 72
4 166 11.7 64
5 164 13.7 59
6 179 12.2 57
7 176 8.3 62
8 172 8.7 65
9 164 11.3 61
10 160 11.7 60
11 173 9.9 65
12 164 13.0 64
13 175 14.5 65
14 166 10.2 63
15 176 12.5 66
16 171 12.9 61
17 166 14.1 58
18 167 11.3 63
19 169 10.7 59
20 162 9.4 67

Table 12: 8x MSAA and FXAA - Vulkan

64



Bibliography

[1] Oreon Engine. https://github.com/oreonengine/oreon-engine.

[2] Fynn-Jorin Flügge. Realtime GPGPU FFT Ocean Water Simulation, 2017. http:
//tubdok.tub.tuhh.de/handle/11420/1439.

[3] Ian Buck. The Evolution of GPUs for General Purpose Computing. Nvidia,
September 2010. In proceedings of the GTC 2010, http://www.nvidia.com/content/
GTC-2010/pdfs/2275_GTC2010.pdf.

[4] Nav Singh. Upcoming NVIDIA driver to give AMD Mantle a run
for its money - massive performance boost. Digitalstorm, March
2014. http://www.digitalstorm.com/unlocked/upcoming-nvidia-driver-to-give-
amd-mantle-a-run-for-its-money-massive-performance-boost-idnum209, visited
August 10, 2018.

[5] Neil Trevett. Vulkan, SPIR-V and OpenCL 2.1. Khronos Group and Nvidia,
April 2015. In proceedings of GTC 2015, https://www.khronos.org/assets/uploads/
developers/library/2015-gtc/Khronos-Overview-GTC_Mar15.pdf.

[6] Microsoft - What is Direct3D 12? https://docs.microsoft.com/en-us/windows/
desktop/direct3d12/what-is-directx-12-, requested August 10, 2018.

[7] Neil Trevett. Khronos Overview. Khronos Group and Nvidia, March 2016. In
proceedings of GDC 2016, https://www.khronos.org/assets/uploads/developers/
library/2016-gdc/Khronos-GDC-Overview_Mar16.pdf.

[8] Tom Olson. Vulkan 101. Khronos Group, September 2016. In proceedings of
Vulkan DevDay UK 2016, https://www.khronos.org/assets/uploads/developers/
library/2016-vulkan-devday-uk/1-Vulkan_101.pdf.

[9] Neil Trevett. Ecosystem Overview. Khronos Group and Nvidia, April 2016. In
proceedings of GTC 2016, https://www.khronos.org/assets/uploads/developers/
library/2016-gtc/2016-GTC-Khronos-API-Ecosystem_Apr16.pdf.

[10] Neil Trevett. Khronos Standards Update. Nvidia, March 2018. In proceedings of
GTC 2018, https://www.khronos.org/assets/uploads/developers/library/2018-gtc/
Khronos-Standards-Update-Trevett-GTC_Mar18.pdf.

[11] History of OpenGL. https://www.khronos.org/opengl/wiki/History_of_OpenGL,
requested August 10, 2018.

65

https://github.com/oreonengine/oreon-engine
http://tubdok.tub.tuhh.de/handle/11420/1439
http://tubdok.tub.tuhh.de/handle/11420/1439
http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf
http://www.digitalstorm.com/unlocked/upcoming-nvidia-driver-to-give-amd-mantle-a-run-for-its-money-massive-performance-boost-idnum209
http://www.digitalstorm.com/unlocked/upcoming-nvidia-driver-to-give-amd-mantle-a-run-for-its-money-massive-performance-boost-idnum209
https://www.khronos.org/assets/uploads/developers/library/2015-gtc/Khronos-Overview-GTC_Mar15.pdf
https://www.khronos.org/assets/uploads/developers/library/2015-gtc/Khronos-Overview-GTC_Mar15.pdf
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/what-is-directx-12-
https://docs.microsoft.com/en-us/windows/desktop/direct3d12/what-is-directx-12-
https://www.khronos.org/assets/uploads/developers/library/2016-gdc/Khronos-GDC-Overview_Mar16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-gdc/Khronos-GDC-Overview_Mar16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/1-Vulkan_101.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/1-Vulkan_101.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-gtc/2016-GTC-Khronos-API-Ecosystem_Apr16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-gtc/2016-GTC-Khronos-API-Ecosystem_Apr16.pdf
https://www.khronos.org/assets/uploads/developers/library/2018-gtc/Khronos-Standards-Update-Trevett-GTC_Mar18.pdf
https://www.khronos.org/assets/uploads/developers/library/2018-gtc/Khronos-Standards-Update-Trevett-GTC_Mar18.pdf
https://www.khronos.org/opengl/wiki/History_of_OpenGL


[12] OpenGL 4.5 Core Profile. Khronos Group, April 2017. https://www.khronos.org/
registry/OpenGL/specs/gl/glspec45.core.pdf.

[13] OpenGL FAQ. https://www.khronos.org/opengl/wiki/FAQ#What_is_
OpenGL.3F, requested August 10, 2018.

[14] Vulkan R© 1.1.82 - A Specification (with all registered Vulkan extensions). Khronos
Group, 2018. https://www.khronos.org/registry/vulkan/specs/1.1-extensions/
html/vkspec.html.

[15] Package org.lwjgl.vulkan. https://javadoc.lwjgl.org/org/lwjgl/vulkan/package-
summary.html, requested August 10, 2018.

[16] Pawel Lapinski. Vulkan Cookbook. Packt Publishing, 2017.

[17] Architecture of the Vulkan Loader Interfaces. https://github.com/
KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/
LoaderAndLayerInterface.md#application-usage-of-extensions, requested August
10, 2018.

[18] Vulkan Validation Layers. https://vulkan.lunarg.com/doc/sdk/1.1.82.0/windows/
layer_configuration.html, requested August 10, 2018.

[19] Create a Swapchain. https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/
tutorial/html/05-init_swapchain.html, requested August 10, 2018.

[20] API without Secrets: Introduction to Vulkan* Part 2: Swap Chain.
https://software.intel.com/en-us/articles/api-without-secrets-introduction-
to-vulkan-part-2, requested August 10, 2018.

[21] Create a Render Pass. https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/
tutorial/html/10-init_render_pass.html, requested August 10, 2018.

[22] Create a Pipeline. https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/
tutorial/html/14-init_pipeline.html, requested August 10, 2018.

[23] Vulkan 1.0.19 + WSI Extensions - A Specification. http://vulkan-spec-
chunked.ahcox.com/ch09.html, requested August 10, 2018.

[24] Vulkan Shader Resource Binding. https://developer.nvidia.com/vulkan-shader-
resource-binding, requested August 10, 2018.

[25] Vulkan Barriers Explained. https://gpuopen.com/vulkan-barriers-explained, re-
quested August 10, 2018.

[26] Tom Olson, David Neto, and Dan Ginsburg. What’s New in
Vulkan? Khronos Group, March 2018. In proceedings of GDC 2018,
https://www.khronos.org/assets/uploads/developers/library/2018-gdc-webgl-
and-gltf/1-Vulkan-Whats-New-GDC_Mar18.pdf.

[27] Jerry Tessendorf. Simulating Ocean Water. 1999.

66

https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/opengl/wiki/FAQ#What_is_OpenGL.3F
https://www.khronos.org/opengl/wiki/FAQ#What_is_OpenGL.3F
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://javadoc.lwjgl.org/org/lwjgl/vulkan/package-summary.html
https://javadoc.lwjgl.org/org/lwjgl/vulkan/package-summary.html
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md#application-usage-of-extensions
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md#application-usage-of-extensions
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md#application-usage-of-extensions
https://vulkan.lunarg.com/doc/sdk/1.1.82.0/windows/layer_configuration.html
https://vulkan.lunarg.com/doc/sdk/1.1.82.0/windows/layer_configuration.html
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/05-init_swapchain.html
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/05-init_swapchain.html
https://software.intel.com/en-us/articles/api-without-secrets-introduction-to-vulkan-part-2
https://software.intel.com/en-us/articles/api-without-secrets-introduction-to-vulkan-part-2
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/10-init_render_pass.html
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/10-init_render_pass.html
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/14-init_pipeline.html
https://vulkan.lunarg.com/doc/view/1.1.73.0/windows/tutorial/html/14-init_pipeline.html
http://vulkan-spec-chunked.ahcox.com/ch09.html
http://vulkan-spec-chunked.ahcox.com/ch09.html
https://developer.nvidia.com/vulkan-shader-resource-binding
https://developer.nvidia.com/vulkan-shader-resource-binding
https://gpuopen.com/vulkan-barriers-explained
https://www.khronos.org/assets/uploads/developers/library/2018-gdc-webgl-and-gltf/1-Vulkan-Whats-New-GDC_Mar18.pdf
https://www.khronos.org/assets/uploads/developers/library/2018-gdc-webgl-and-gltf/1-Vulkan-Whats-New-GDC_Mar18.pdf


[28] Mark Harris and Sawn Hargreaves. Deferred Shading. http://download.nvidia.com/
developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_
Shading.pdf, requested August 10, 2018.

[29] Nvidia Gameworks - Antialiased Deferred Rendering. https://docs.nvidia.com/
gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/
antialiaseddeferredrendering.htm, requested August 10, 2018.

[30] Timothy Lottes. FXAA. https://developer.download.nvidia.com/assets/gamedev/
files/sdk/11/FXAA_WhitePaper.pdf, requested August 10, 2018.

[31] Greg James and John O’Rorke. GPU Gems - Chapter 21. Real-Time Glow. Nvidia,
2004.

[32] Relative Luminance. https://www.w3.org/WAI/GL/wiki/Relative_luminance,
requested August 10, 2018.

[33] Khronos Logos, Trademarks, and Guidelines. https://www.khronos.org/legal/
trademarks, requested August 10, 2018.

67

http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://www.w3.org/WAI/GL/wiki/Relative_luminance
https://www.khronos.org/legal/trademarks
https://www.khronos.org/legal/trademarks



	Introduction
	Why New API?
	Origin and History of Vulkan
	Vulkan - More Performance and Efficieny
	Will OpenGL Get Outdated?

	Vulkan API Overview
	Layers
	Extensions
	Vulkan Instance
	Devices
	VkPhysicalDeviceProperties
	VkPhysicalDeviceFeatures
	VkPhysicalDeviceMemoryProperties
	VkDevice

	Queues
	Window System Integration
	Command Buffers
	Render Passes
	Framebuffers
	Pipelines
	Descriptors
	Push Constants
	Buffers
	Images
	Synchronization
	Fences
	Events
	Semaphores
	Barriers

	SPIR-V Shaders

	The Case Study Scenario
	Deferred Shading with MSAA
	Transparency Blending
	FXAA
	Bloom
	Dynamic Panel Overlay

	Engine Design and Implementation
	Ocean Resources
	Displacement Maps
	Dy-Normalmap and Mipmap Generation
	Scene Reflection/Refraction and Deferred Shading

	Opaque Scene G-Buffer
	Sample Coverage and Deferred Shading
	Transparent Scene and Blending
	FXAA and Post Processing
	Panel Overlay
	Presentation

	Case Study: OpenGL vs. Vulkan
	Evaluation
	Appendix
	Measured Simulation Data - OpenGL
	Measured Simulation Data - Vulkan



