Masterarbeit, 2021
53 Seiten, Note: 99/110
This thesis examines the application of the truncated M-fractional derivative to obtain solitary wave solutions for both the fractional generalized Duffing model and the fractional diffusion reaction model. The work further explores specific cases of the fractional generalized Duffing model, including the fractional Landau-Ginzburg-Higgs equation, the classical fractional Klein-Gordon equation, the Phi-4 equation, the Sine-Gordon equation, and the Duffing equation. The obtained results offer potential insights into these models and their behavior.
This research focuses on the application of the truncated M-fractional derivative to obtain solitary wave solutions for fractional differential equations, particularly the generalized Duffing model and the diffusion reaction model. Key terms include fractional differential equations, solitary wave solutions, truncated M-fractional derivative, the generalized Duffing model, the Landau-Ginzburg-Higgs equation, the classical fractional Klein-Gordon equation, the Phi-4 equation, the Sine-Gordon equation, the Duffing equation, and the diffusion reaction model.
Solitary wave solutions are wave packets that maintain their shape while traveling at constant speeds, often used to model physical phenomena in nonlinear systems.
The truncated M-fractional derivative is a novel mathematical operator used to study fractional differential equations with more precision and better properties than classical derivatives.
The study analyzes the fractional generalized Duffing model and the fractional diffusion reaction model, including special cases like the Sine-Gordon and Klein-Gordon equations.
The extended Sinh-Gordon equation expansion method (EShGEEM) is a modified integration technique used to effectively secure solitary wave solutions for fractional differential equations.
The obtained solitary wave solutions are verified using symbolic software like Mathematica and explained through detailed graphical representations.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

