Bachelorarbeit, 2021
33 Seiten, Note: 1,3
This thesis explores the nature of non-functional requirements (NFRs), their characteristics in app store reviews, and existing research on automated solutions for classifying NFRs from such reviews. The goal is to investigate the performance of a machine learning (ML) algorithm trained on a manually labeled dataset of app store reviews. The thesis aims to contribute to both theoretical understanding and practical applications of NFR identification.
The first chapter introduces the concept of Requirements Engineering (RE) and its importance in software development. It highlights the distinction between functional requirements (FRs) and NFRs, emphasizing the significance of NFRs for user satisfaction, particularly in mobile applications. The chapter then outlines the thesis's objectives and structure.
The second chapter provides a theoretical background by discussing the core concepts of RE, including the different types of requirements, particularly focusing on NFRs and their classification. This chapter lays the groundwork for understanding the challenges of extracting and classifying NFRs from app store reviews.
Chapter 3 delves into a comprehensive review of relevant literature. It explores different taxonomies for NFRs and examines how these NFRs manifest within app store reviews. The chapter also examines previous research efforts to automate NFR classification using machine learning (ML) algorithms.
Chapter 4 focuses on the development and application of a specific ML algorithm, the Support Vector Machine, to a dataset of manually labeled app store reviews. The chapter details the methodology used for training and testing the algorithm.
The central themes of this thesis revolve around requirements engineering, non-functional requirements, app store reviews, machine learning, classification algorithms, and performance evaluation. The thesis investigates the potential for automating the extraction and classification of NFRs from user reviews, aiming to improve the development and user satisfaction of mobile applications.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare