Bachelorarbeit, 2021
89 Seiten
This thesis aims to investigate different aspects of Native Guide, a generative counterfactual explanation method for time series data classification. It explores the method's functionality, examines its strengths and weaknesses, and proposes optimizations for improving counterfactual explanations, especially in the context of electrocardiogram (ECG) classification.
This work focuses on explainable AI, counterfactual explanations, time series data classification, ECG signal data, Native Guide, and expert evaluation. It explores the potential of counterfactuals to enhance the understanding and trust in AI-driven ECG classification systems.
Native Guide is an instance-based method that generates counterfactual explanations for time series data by using real nearest-neighbor samples.
They explain why an AI model predicted a certain heart condition by showing how the ECG signal would need to change to result in a different classification.
ECG data is periodic; synchronization ensures that swapped subsequences align correctly, which is crucial for generating plausible explanations for cardiologists.
Cardiologists found the approach promising, especially for training junior doctors, although they emphasized the need for high data quality and plausibility.
They increase trust and transparency by making AI predictions retracable and comprehensible, which is vital in life-affecting medical domains.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

