Bachelorarbeit, 2021
29 Seiten, Note: 1,3
This bachelor thesis aims to provide an understanding of Markov Decision Processes (MDPs) and present fundamental methods of Reinforcement Learning (RL), specifically Monte Carlo Learning and Q-Learning. The focus is on illustrating how these methods can be applied to solve decision problems modeled by MDPs. The work utilizes a cleaning robot application to demonstrate the practical implementation of these techniques.
This thesis focuses on Markov Decision Processes, Reinforcement Learning, Monte Carlo Learning, Q-Learning, Value Iteration, Cleaning Robot, Decision Problems, Optimal Policy, and Application. These keywords represent the core concepts and research focus of the work.
MDPs provide a mathematical framework for modeling decision-making where outcomes are partly random and partly under the control of a decision-maker.
RL is an area of machine learning where an agent learns to behave in an environment by performing actions and seeing the results/rewards.
Q-Learning is a model-free RL algorithm used to find the best action-selection policy for any given MDP.
It is a method of learning from episodes of experience, calculating values based on the average return of complete sequences of actions.
The thesis uses a cleaning robot as a practical example to demonstrate how Value Iteration, Monte Carlo, and Q-Learning solve real-world navigation problems.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

