Doktorarbeit / Dissertation, 2017
145 Seiten, Note: 100.00/100.00
This thesis aims to develop novel hybrid models for predicting maximal oxygen uptake (VO2max) using machine learning methods combined with feature selection algorithms. This research explores the benefits of combining maximal, submaximal, and questionnaire variables to improve the accuracy of VO2max prediction models.
Chapter 1 introduces the concept of VO2max, its significance in health and physical fitness, and the challenges associated with direct VO2max measurement. This chapter also presents the motivation behind this research and outlines the specific research questions addressed in the thesis.
Chapter 2 provides a comprehensive review of existing VO2max prediction models based on maximal, submaximal, and questionnaire variables. It also discusses various feature selection methods commonly used in machine learning, exploring their advantages and limitations.
Chapter 3 details the materials and methods used in this research. This includes a description of the three datasets utilized for model development, the feature selection algorithms employed, and the machine learning methods applied to construct the VO2max prediction models. It also elaborates on the model evaluation techniques and performance metrics employed.
Chapter 4 presents the results of the feature selection process and the performance evaluation of the developed prediction models. It analyzes the selected features for each dataset and compares the accuracy and robustness of the proposed hybrid models with existing methods.
Chapter 5 discusses the contributions and significance of this research, highlighting the novel aspects of the developed hybrid models and their potential impact on the field of VO2max prediction. This chapter also acknowledges the limitations of the study and suggests potential directions for future research.
This thesis focuses on the application of machine learning methods and feature selection algorithms to predict maximal oxygen uptake (VO2max). Key topics include hybrid models, feature selection, Relief-F, mRMR, MLFS, MVFS, Support Vector Machine (SVM), artificial neural networks, and prediction accuracy.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare