Masterarbeit, 2022
169 Seiten, Note: 9
This thesis aims to develop a robust and efficient path planning strategy for point-to-point navigation of a mobile robot in a GPS-denied indoor environment. The primary goal is to ensure collision-free movement by accurately detecting and avoiding obstacles, both static and dynamic, while achieving an optimized path.
Chapter 1 introduces the research problem, objectives, and the proposed framework. The main contributions of the thesis are also detailed, focusing on LiDAR data inference, fusion SLAM, and geometric optimization techniques. Chapter 2 reviews relevant literature on SLAM, object detection, and path planning strategies, highlighting the significance of sensor fusion and the need for robust methods to handle dynamic obstacles. Chapter 3 explores the visual representation of the robot's trajectory and environment recreation, discussing the functionalities of SLAM algorithms, the characteristics of Hector SLAM and RGB-D SLAM, and the process of 3D reconstruction. Chapter 4 delves into object detection and recognition, examining different machine learning approaches and presenting the application of YOLO v4 for obstacle detection. Chapter 5 analyzes the fundamentals of mobile robot navigation, discussing various graph theoretic and bio-inspired path planning algorithms, including their advantages, disadvantages, and space-time complexities. Chapter 6 outlines the experimental methodology, describing the setup, hardware, software, and camera calibration procedures. Chapter 7 presents the results of the experiments, showcasing the performance of different SLAM techniques, obstacle detection using YOLO v4, and the comparative analysis of path planning algorithms. Chapter 8 concludes with a discussion of the research findings, summarizing the main contributions, highlighting the limitations of the study, and suggesting potential future directions for this research field.
This thesis explores the intersection of sensor fusion, SLAM, machine learning, and path planning algorithms to achieve robust point-to-point navigation for mobile robots in challenging indoor environments. Key terms and concepts include: point-to-point navigation, adversarial neural network, heuristic algorithms, GPS-denied environment, path planning, VSLAM, sampling-based technique, learning-based technique, geometrical optimization, object detection, obstacle avoidance, and zone prioritization.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare