Masterarbeit, 2022
106 Seiten, Note: 1,3
This master thesis examines the effectiveness of various machine learning-based variable selection methods in the Growth-at-Risk (GaR) context. It seeks to determine whether utilizing these methods for variable selection can improve the accuracy of GaR predictions compared to traditional methods that rely on aggregated indices.
The primary focus of this thesis revolves around machine learning applications in the context of Growth-at-Risk (GaR). Key concepts include variable selection methods, LASSO quantile regression, Elastic Net, quantile regression, backtesting, expanding window, rolling window, and out-of-sample analysis. The research examines the performance of these methods in predicting GaR, with a particular interest in their effectiveness during periods of economic crisis.
GaR is a framework used to assess the downside risks to future GDP growth, focusing on the conditional distribution of growth rather than just the mean.
ML methods like LASSO and Elastic Net help automate the selection of relevant financial indicators, potentially increasing predictive power compared to manual selection.
These are shrinkage and selection methods used in quantile regression to handle high-dimensional data and improve model stability.
The NFCI is a key predictor used to measure financial imbalances that can signal future risks to economic growth.
The thesis conducted a backtesting exercise based on US economic data ranging from 1986 to 2019.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

