Masterarbeit, 2022
69 Seiten, Note: 3
This master thesis investigates the application of machine learning techniques in detecting fraudulent banking transactions. The primary objective is to develop and evaluate a robust fraud detection model capable of accurately identifying suspicious transactions in real-time.
The thesis begins with a comprehensive introduction, defining the problem of fraudulent transactions and highlighting the significance of machine learning in this domain. The subsequent chapter delves into the objectives of the study, outlining the research questions and methodologies employed.
Chapter 3 provides a thorough literature review, examining existing research on fraud detection, discussing various machine learning approaches, and highlighting recent fraud cases. It further explores the CRISP-DM model, a structured data mining process that guides the development and deployment of fraud detection systems.
Chapter 4 focuses on the methodology and case study. It discusses banking theory, data description, and detailed data preparation techniques, including data scaling, handling missing values, and encoding categorical features. The chapter further presents a thorough analysis of the data, including univariate and bivariate analysis, feature selection, and model comparison. Finally, it evaluates the performance of various machine learning models using different classification evaluation metrics.
Fraud detection, machine learning, banking transactions, data preprocessing, feature engineering, model evaluation, imbalanced data, CRISP-DM, logistic regression, decision tree, random forest, XGBoost, gradient boosting, LGBM, confusion matrix, precision, recall, F1 score, AUC-ROC, accuracy.
Machine learning algorithms analyze millions of transactions to identify patterns, anomalies, and suspicious behaviors that deviate from normal customer activity.
CRISP-DM (Cross-Industry Standard Process for Data Mining) is a structured approach for data projects, involving business understanding, data preparation, modeling, and evaluation.
Common algorithms include Logistic Regression, Decision Trees, Random Forest, XGBoost, and Support Vector Machines (SVM).
Fraudulent transactions are very rare compared to legitimate ones. This imbalance can lead to models that are biased towards predicting everything as "legitimate."
Key metrics include Precision, Recall, F1-score, and the Area Under the ROC Curve (AUC-ROC), rather than just simple accuracy.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

