Doktorarbeit / Dissertation, 2022
158 Seiten, Note: 75.0%
This Ph.D. thesis investigates the boundary layer flow of a CuO-oil-based nanofluid with heat generation through a vertical permeable surface. The research aims to provide a comprehensive understanding of the fluid dynamics and heat transfer characteristics of this system, including the effects of various physical parameters such as nanoparticle volume fraction, heat generation parameter, and permeability parameter. The study utilizes numerical methods to solve the governing equations and analyze the resulting data.
Chapter 1 provides an introduction to the research topic, outlining the background of the study, the research problem, the objectives, the scope, the significance of the study, and a comprehensive literature review. Chapter 2 focuses on the mathematical formulation of the problem, establishing the governing equations, boundary conditions, dimensionless parameters, and the similarity transformation used to simplify the equations. Chapter 3 describes the numerical methods employed to solve the formulated problem, including the stability analysis and convergence criteria. Chapter 4 presents the results and discussion of the numerical simulations, examining the effects of various parameters on the velocity, temperature, and concentration profiles, as well as the skin friction coefficient, Nusselt number, and Sherwood number.
This thesis explores the complexities of boundary layer flow, heat transfer, and nanofluids. Key areas of focus include the dynamics of CuO-oil-based nanofluid flow, heat generation effects, the influence of nanoparticle volume fraction, the role of a permeable surface, and the application of numerical methods for solving governing equations.
It is a heat transfer fluid consisting of oil (the base fluid) dispersed with copper oxide (CuO) nanoparticles. These nanoparticles enhance the fluid's thermal conductivity and other thermo-physical properties.
Boundary layer flow is crucial for understanding skin-drag, heat transfer in high-speed flight, and aerodynamics, which are vital for designing efficient engines, ships, and aircraft.
Nanofluids provide better cooling, improve lubrication, protect metal surfaces from rust, and help maintain engine performance and durability compared to traditional heat carriers.
Heat generation influences the temperature and velocity profiles within the boundary layer, which in turn affects the heat transfer rate (Nusselt number) and skin friction coefficient.
The study uses mathematical formulation (Navier-Stokes equations), similarity transformations, and numerical methods to simulate and analyze the fluid behavior through a vertical permeable surface.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

