Doktorarbeit / Dissertation, 2023
118 Seiten, Note: 1
Geowissenschaften / Geographie - Meteorologie, Aeronomie, Klimatologie
This thesis aims to contribute to the optimal use of Aeolus wind observations in Numerical Weather Prediction (NWP) models and evaluate their benefits using the ICON model's global data assimilation system at the Deutscher Wetterdienst (DWD). The research addresses the characteristics of Aeolus wind observation errors, methods for error correction, the relative benefit of Aeolus observations within the DWD assimilation system, and dynamical scenarios linked to Aeolus's high impact on NWP forecasts.
Chapter 1: Introduction Provides background on the importance of wind observations for NWP, highlighting deficiencies in the global observing system and the Aeolus mission's objectives. It outlines the research goals and the structure of the thesis.
Chapter 2: Basic principles Explains the fundamentals of Aeolus observations, including the ALADIN instrument and data processing. It also details relevant data assimilation methods, focusing on 3D-Var and EnKF/LETKF, and describes the DWD global data assimilation system.
Chapter 3: Data and methodology Describes the datasets used for the Aeolus HLOS wind validation study (radiosondes, ICON, and IFS model equivalents) and the impact study (OSE). It details the quality control procedures, representativeness error estimation, and statistical metrics employed.
Chapter 4: Results: Validation of Aeolus HLOS wind observations Presents the validation results, characterizing the systematic and random errors of Aeolus HLOS wind observations and investigating bias dependencies. It explores bias correction approaches.
Aeolus, Doppler Wind Lidar (DWL), Numerical Weather Prediction (NWP), data assimilation, 3D-Var, Ensemble Kalman Filter (EnKF), observation error, representativeness error, bias correction, Observing System Experiment (OSE), ICON model, ECMWF IFS model, Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), extratropical transition (ET).
Aeolus is a satellite mission equipped with a Doppler Wind Lidar (DWL) called ALADIN, designed to provide quasi-global profiles of Earth's winds to improve weather forecasting.
DWL measures the Doppler shift of laser light backscattered from molecules (Rayleigh) and particles (Mie) in the atmosphere to determine wind speed and direction.
Data assimilation is the process of combining short-range forecasts with new atmospheric observations (like Aeolus data) to create the most accurate initial conditions for a new forecast.
There is a lack of wind data in many regions (like oceans and tropics). Filling these gaps is crucial for improving the skill of global numerical weather models like ICON or IFS.
These are errors that occur when comparing satellite measurements (covering a large volume) with local point observations (like radiosondes) due to differences in spatial and temporal scales.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

