Doktorarbeit / Dissertation, 2022
179 Seiten
Geowissenschaften / Geographie - Phys. Geogr., Geomorphologie, Umweltforschung
This research aims to develop a reliable and accurate Neuro-Fuzzy Expert System (NFES) for estimating earthquake seismicity and predicting impending earthquakes. The study leverages computational intelligence techniques and applies them to earthquake prediction, focusing on the development of a sophisticated system that can accurately assess and predict seismic activity.
This chapter provides an overview of the research, highlighting the importance of earthquake prediction and the need for reliable systems. It outlines the research objectives, scope, and the organization of the thesis.
This chapter presents a comprehensive review of existing literature on earthquake seismicity estimation, seismic prediction methods, artificial neural networks, fuzzy logic, and neuro-fuzzy systems. It explores the use of these techniques in earthquake prediction and the development of earthquake early warning systems.
This chapter focuses on the methodology of data collection and analysis. It describes the data sources, data pre-processing techniques, and the statistical analysis of earthquake data used in the research.
This chapter outlines the design and implementation of the Neuro-Fuzzy Expert System (NFES) developed for earthquake seismicity estimation and prediction. It explains the system architecture, training and testing procedures, and performance evaluation metrics.
This chapter presents the results obtained from the application of the NFES, including its performance evaluation using various metrics. The results are discussed in relation to the research objectives and existing literature.
The research primarily revolves around the application of computational intelligence techniques to earthquake seismicity estimation and prediction. Key terms include: earthquake seismicity, Neuro-Fuzzy Expert System (NFES), Artificial Neural Networks (ANN), Fuzzy Logic, Earthquake Early Warning Systems (EEWS), data analysis, performance evaluation metrics.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare