Masterarbeit, 2015
105 Seiten, Note: 1.3
This master's thesis develops and evaluates an automatic image annotation algorithm for object recognition systems, focusing on leveraging online databases to address the semantic gap problem. The goal is to automatically label images with textual tags representing semantic information without relying on large, manually-annotated local databases.
Chapter 2: Fundamentals introduces content-based image retrieval (CBIR) and image annotation, focusing on the semantic gap problem and various image representation methods. It details image comparison methods and introduces Google's Reverse Image Search Engine, a key component of the developed system.
Chapter 3: Related Works reviews existing automatic image annotation systems, highlighting their approaches and limitations, particularly concerning the use of large local databases.
Chapter 4: The Semantic Annotation System presents the developed system, which combines online and offline annotation engines. The online engine uses Google's Reverse Image Search to find visually similar images and extracts tags from associated web texts. The offline engine utilizes a small local database for improved accuracy on specific objects.
Chapter 5: Implementation details the system's implementation using ROS, Libcurl, WordNet, and FIRE, explaining their roles in the annotation process.
Chapter 6: Testing and Evaluation describes the testing environment and presents the evaluation results of both online and offline engines, separately and combined. Different parameters and modules are tested to optimize performance.
Semantic image annotation, semantic gap, content-based image retrieval (CBIR), online search engines, object recognition, Google Reverse Image Search, offline database, invariant feature histograms, Jensen-Shannon divergence, Robot Operating System (ROS).
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare