Abschlussarbeit, 2024
19 Seiten, Note: A
The text presents a language preview for a study investigating the disease courses and management of patients with Primary Biliary Cholangitis (PBC) and Autoimmune Hepatitis (AIH) overlap syndrome, utilizing data from the R-LIVER registry across expert centers in Europe.
The table of contents lists chapters covering: Introduction and Aims of Study, Patients and Methods, Results, and Discussion and Conclusions. Specific subtopics include definition and epidemiology of PBC-AIH syndrome, diagnosis, prognosis, treatment, aims of the study, description of the dataset, data analysis, selection of variables and imputation of missing data, machine learning supervised classification of diagnosis groups, decision tree classification model, study population, biochemical responses, and treatment protocols.
The study aims to investigate the current disease courses and management of patients with PBC-AIH overlap syndrome, using data from the R-LIVER registry. Key themes include clinical characteristics and treatment of PBC-AIH overlap syndrome, comparison of biochemical markers across different patient groups, analysis of treatment regimen transitions, development and application of a decision tree algorithm for classification, and assessment of diagnostic criteria and clinical pathways.
Chapter 1 introduces Primary Biliary Cholangitis (PBC) and Autoimmune Hepatitis (AIH), emphasizing their characteristics and the overlap syndromes. It discusses the clinical significance of recognizing PBC-AIH overlap and outlines the study's aims, including investigating current disease courses and management strategies.
Chapter 2 describes the dataset sourced from the R-LIVER registry, inclusion criteria, and period covered (2017-2023). It outlines data analysis techniques used, including comparing clinical features and treatment regimens across patient groups, using alluvial plots to visualize treatment transitions, applying a decision tree algorithm, and methods for handling missing data.
Chapter 3 presents the study's findings, including the characteristics of the study population (372 individuals across four groups) and the median follow-up period (24 months). It compares biochemical markers across groups and analyzes treatment regimens and their changes over time. The performance of the decision tree classification model is also reported.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare