Diplomarbeit, 2011
131 Seiten, Note: 1,0
The first chapter introduces the basic concepts and definitions related to Lie groups acting isometrically on Lorentzian manifolds. It includes examples such as the product with a compact Riemannian manifold, the two-dimensional affine algebra, the special linear algebra, the Heisenberg algebra, and twisted Heisenberg algebras. The chapter also discusses the induced bilinear form on the Lie algebra.
The second chapter presents the main theorems of the thesis, divided into algebraic, geometric, and homogeneous cases. These theorems provide a foundation for the subsequent classification and analysis of the Lie groups and manifolds.
The third chapter focuses on the algebraic classification of the Lie algebras, analyzing symmetric bilinear forms, nilradical, radical, compact radical (specifically the special linear algebra case), and non-compact radical. The non-compact radical section further explores cases where the form is not positive semidefinite (twisted Heisenberg algebra) and when it is positive semidefinite. The chapter concludes by examining general subgroups of the isometry group in different cases.
The fourth chapter delves into the geometric characterization of the manifolds, exploring cases where the induced bilinear form is positive semidefinite, where the action is locally free, and where the form is indefinite. The indefinite case is further investigated in terms of Lorentzian character of orbits, orthogonal distribution, structure of the manifold, and Lorentzian metrics on the twisted Heisenberg group.
The fifth chapter focuses on compact homogeneous Lorentzian manifolds, analyzing their structure, general reductive representation, and geometry. The geometry section explores curvature and holonomy, cases where the isometry group contains a cover of the projective special linear group, cases where the isometry group contains a twisted Heisenberg group, and the relationship between the isotropy representation and Ricci-flat manifolds.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare