Doktorarbeit / Dissertation, 2011
185 Seiten, Note: 1,0
This dissertation aims to address the challenges posed by the large volume of user-generated data and the lack of controlled vocabularies in social web applications, particularly social tagging systems. It focuses on utilizing data mining and machine learning techniques to improve user experience and combat malicious attacks.
Chapter 1: Introduction introduces the context of social web applications, highlighting their benefits and challenges. It outlines the research objectives and the scope of the dissertation.
Chapter 2: Related Work reviews existing literature on recommendation systems, social tagging systems, and ontology development, providing a foundation for the research presented in subsequent chapters.
Chapter 3: Framework for Mapping Domain Properties to Recommendation Technologies details a systematic approach for selecting suitable recommendation technologies based on specific domain properties and problem types.
Chapter 4: Improved Graph-Based Approaches for Personalized Tag Recommendation presents enhancements to existing graph-based methods for providing personalized tag recommendations in folksonomies, improving user experience and information retrieval.
Chapter 5: Machine Learning Algorithms for Semantic Relation Recommendation describes the development of machine learning algorithms aimed at improving continuous ontology development within a social semantic web setting.
Chapter 6: Framework for Analyzing Attacks Against Social Tagging Systems introduces a novel framework designed to analyze different types of attacks against social tagging systems, and to evaluate their impact.
Data mining, machine learning, recommender systems, social semantic web, social tagging systems, ontology development, personalized recommendations, attack analysis, folksonomies, semantic relations.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Gast
Nice
am 20.11.2011