Doktorarbeit / Dissertation, 2005
191 Seiten
PEM Fuel Cells, DMFC, H2 PEMFC, Multi-scale Modeling, Optimization, CO Poisoning, Fuel Utilization, Heat Integration, Methanol Crossover, Proton Diffusion, Molecular Simulation, System Efficiency, Power Density, Electrode Kinetics.
This language preview provides a comprehensive overview of a dissertation focusing on multi-scale modeling and optimization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs), including both direct methanol fuel cells (DMFCs) and hydrogen PEMFCs (H2 PEMFCs). It includes the table of contents, objectives, key themes, chapter summaries, and keywords of the dissertation.
The key themes include multi-scale modeling of DMFCs and H2 PEMFCs, optimization of fuel cell performance through parameter tuning and operational strategies, analysis of CO poisoning effects in H2 PEMFCs and mitigation strategies, macro-scale system optimization of H2 PEMFC power generation systems (including heat integration), and micro-scale investigation of PEM transport phenomena using molecular simulations.
Chapter 2 presents a DMFC model incorporating electrode kinetics and methanol crossover. It identifies key parameters and establishes a relationship between methanol feed concentration and power density. Sensitivity analysis determines an optimal feed concentration for maximizing power density. Dynamic optimization refines the feed strategy for high power output under specific conditions.
Chapter 3 utilizes a one-dimensional model to analyze transport phenomena in the anode of an H2 PEMFC, specifically focusing on the "CO poisoning" effect and the impact of hydrogen dilution. It quantifies voltage losses due to CO and explores O2 bleeding as a mitigation strategy to maximize current density, even with CO present.
Chapter 4 models a complete H2 PEMFC power generation system, including fuel reforming, the fuel cell stack, and post-combustion. The integrated model is optimized to maximize energy efficiency, system efficiency and system profit. A case study examining H2 production demonstrates the impact of CH4 and H2O inlet flow rates and temperature. It also showcases the benefits of heat integration in increasing efficiency and profitability.
Chapter 5 employs molecular modeling techniques to investigate PEM transport at a microscopic level. Monte Carlo simulations characterize the Nafion polymer structure, while molecular dynamics simulations link this structure to proton diffusion within the PEM. The impact of water uptake on proton transfer is also explored, providing insights for the design of improved PEM materials.
The keywords include PEM Fuel Cells, DMFC, H2 PEMFC, Multi-scale Modeling, Optimization, CO Poisoning, Fuel Utilization, Heat Integration, Methanol Crossover, Proton Diffusion, Molecular Simulation, System Efficiency, Power Density, and Electrode Kinetics.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare