Diplomarbeit, 2004
101 Seiten, Note: 1,0
This thesis aims to contribute to the field of innovation diffusion by providing a comprehensive framework for analyzing and forecasting the adoption of new technologies using survival trees. The work seeks to address the limitations of traditional aggregate models and provide a micro-level approach to understanding individual adoption decisions.
Chapter 1: Introduction This chapter introduces the thesis and provides context for the research. It discusses the significance of innovation diffusion for economic growth and highlights the limitations of existing diffusion models.
Chapter 2: Modelling Censored Event Data in the Context of Innovation Adoption- and Diffusion Theory This chapter provides a detailed overview of the theoretical framework for analyzing and forecasting innovation diffusion. It discusses the key concepts and methodologies used in event history analysis, including both parametric and non-parametric methods.
Chapter 3: Presentation and Analysis of the Survival Tree Method This chapter presents the survival tree method as a powerful tool for analyzing innovation diffusion. It discusses the principles and mechanics of survival trees, including splitting, pruning, and tree selection. The chapter also assesses the strengths and weaknesses of the method.
Chapter 4: The use of Survival Trees to Forecast Innovation Diffusion This chapter demonstrates the practical application of survival trees in forecasting innovation diffusion. It describes the data used in the study and the implementation of the survival tree model. The results of the analysis are presented and discussed in relation to the theoretical framework.
The primary keywords and focus topics of this work include: innovation diffusion, survival trees, event history analysis, censored event data, dynamic micro models, technology adoption, e-purchase adoption, economic growth, competitiveness, and innovation management.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare