Masterarbeit, 1999
122 Seiten, Note: 1,0
This thesis investigates the properties of the q-state Potts Model by analyzing partition functions and their zeros in the complex temperature and q-plane, aiming to connect finite-lattice results with the thermodynamic limit.
The thesis focuses on finite polygonal lattices, including square, triangular, honeycomb, and Kagome lattices.
The primary method is the transfer-matrix method, used to calculate the partition function, which is expressed as a polynomial in a = e^(-J/kT) and q. The method also exploits S_q symmetry to improve computational efficiency.
Partition function zeros are points of non-analyticity. In the thermodynamic limit, these zeros form a continuous curve (B), where the free energy is non-analytic, indicating a phase transition. Their behavior in finite lattices helps understand model properties in the thermodynamic limit.
For a = 0 (zero temperature), the partition function reduces to the chromatic polynomial P_G(q) of the graph. Analyzing zeros in the complex q-plane provides insights into the ground state degeneracy and entropy via S_0(G, q) = k_B ln(W_G(q)).
Primarily free boundary conditions are used. Periodic boundary conditions are also considered, especially in one direction to allow the use of the interface-method.
Duality relates a lattice G to its dual G_d, connecting high- and low-temperature partition functions. It also informs which boundary conditions conserve this relationship.
If all lattice sites have an even coordination number, the partition function contains only even powers of 'a'. Bipartite lattices have two sub-lattices where spins interact only with those on the other sublattice, leading to additional symmetry properties and simplifications.
It is attempted to combine previous research that has concentrated either on critical properties and complex temperature-zeros or on chromatic polynomials and ground state entropy to obtain results for both T and q variable.
The zeros in the q-plane form a continuous curve in the thermodynamic limit. Zeros can lie in the left half-plane ((q) < 0) for the square and triangular lattice if boundary conditions in the y-direction are periodic.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare