Masterarbeit, 2013
79 Seiten, Note: A+
This dissertation aims to investigate and develop a robust gender identification system using acoustic features extracted from speech signals. The system utilizes various machine learning techniques, including Gaussian Mixture Models (GMMs) and Adaboost, to achieve high accuracy in identifying the gender of a speaker. The dissertation explores the effectiveness of different acoustic features and model combinations in enhancing gender identification performance.
The dissertation begins with an introduction that provides background information on gender identification and its applications, outlining the motivation and objectives of the research. Chapter 2 delves into the fundamental concepts of speech signal processing, discussing the key techniques used in the research. Chapter 3 covers speech enhancement techniques, explaining their importance in improving the quality of speech signals for gender identification. Chapter 4 focuses on different gender identification systems based on acoustic features, pitch extraction, and model fusion. Chapter 5 explores various learning techniques for gender identification, including Gaussian Mixture Models (GMMs) and Adaboost, along with the implementation of a Universal Background Model (UBM). Chapter 6 presents the system design and implementation, outlining the tools, algorithms, and feature selection employed in the development of the gender identification system. Finally, Chapter 7 summarizes the findings of the research, discusses the system performance, and provides recommendations for future work.
This dissertation focuses on gender identification, speech signal processing, acoustic features, machine learning, Gaussian Mixture Models (GMMs), Adaboost, Universal Background Model (UBM), and system design and implementation. The research analyzes the effectiveness of various techniques for gender identification and aims to develop a robust and accurate system for practical applications.
It is a digital system designed to identify the gender of a speaker based on acoustic features extracted from speech signals.
MFCCs are acoustic features commonly used in speech processing to represent the power spectrum of a sound based on human hearing perception.
The study utilized Adaboost and Gaussian Mixture Models (GMM) to classify speakers as male or female.
Shifted Delta Cepstral (SDC) is an acoustic feature that, when fused with pitch data, provided high accuracy in this gender recognition implementation.
The implementation reached almost 90% accuracy when testing acoustic and fused models on real-world YouTube video data.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

