Masterarbeit, 2014
98 Seiten, Note: 1,0
The introductory chapter lays out the thesis's intention, which is to develop a model capable of predicting highly lucrative companies using classification trees and forests based on data extracted from annual statements. The chapter also discusses the procedural steps involved in the analysis.
Chapter 2 provides a comprehensive overview of key figure analysis, covering its principles, classical and modern approaches, and inherent limitations. The chapter delves into the significance of key figures in understanding a company's financial health and provides a framework for selecting and analyzing relevant figures.
Chapter 3 describes the dataset used in the study, outlining its structure and content. It also details the data cleaning processes undertaken to ensure the accuracy and reliability of the data for analysis.
Chapter 4 dives into the selection of key figures for the study, focusing on criteria for determining their significance. The chapter lists the selected key figures, categorizing them into classes based on their nature (qualitative, absolute, and relative). The chapter concludes with an analysis of the class variable, which represents the target variable for classification.
Chapter 5 introduces the classification algorithms used in the study, namely classification trees and forests. It explains the principles behind these algorithms, their generation process, and their relevant properties. This chapter provides a theoretical foundation for understanding how these algorithms operate and are applied in the analysis.
Chapter 6 presents the results of the classification process, focusing on the performance of both classification trees and forests in predicting company success. It examines the most precise tree and provides a ranking of key indicators in terms of their importance in determining classification outcomes. The chapter also explores the applicability of the model to data from a different time period (2011) and assesses its accuracy in predicting financial success.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare