Doktorarbeit / Dissertation, 1997
115 Seiten, Note: cum laude
This dissertation focuses on developing and applying a new tomography method, Physical Parameter Eclipse Mapping, to reconstruct the structure of accretion disks in cataclysmic variables. The aim is to directly map the disk's structure in terms of fundamental physical parameters like temperature and surface density.
The dissertation begins with an introduction to accretion disks in cataclysmic variables, covering their structure, physical properties, and the importance of studying these systems. It then dives into the development of the new Physical Parameter Eclipse Mapping method, outlining its theoretical foundation and demonstrating its capabilities through synthetic data analysis. The subsequent chapters explore the application of the method to real data from two dwarf novae, IP Pegasi and HT Cassiopeiae, focusing on their unique characteristics, spectral properties, and the results of the tomography analysis. The comparison of these results with classical Eclipse Mapping reveals important insights into the physical processes occurring in accretion disks.
The key words and focus topics of this dissertation revolve around accretion disks in cataclysmic variables, their structure, and the application of Physical Parameter Eclipse Mapping. The work delves into topics such as physical parameters like temperature and surface density, the analysis of real data from dwarf novae IP Pegasi and HT Cassiopeiae, and the comparison between the new tomography method and classical Eclipse Mapping. These themes contribute to understanding the dynamics and evolution of accretion processes in these systems, furthering our knowledge in astrophysics.
It is a new tomography method developed to map the structure of accretion disks in cataclysmic variables directly in terms of physical parameters like temperature and surface density.
These are close binary star systems where mass is transferred from a main-sequence star to a white dwarf, often resulting in the formation of an accretion disk.
They serve as "laboratories" for studying accretion processes. IP Pegasi is a well-known dwarf nova, while HT Cassiopeiae is often called the "Rosetta Stone" due to its unique properties.
Classical mapping focuses on intensity distributions, whereas Physical Parameter Eclipse Mapping reconstructs the disk's structure using fundamental physical units.
The boundary layer is the region where the accretion disk meets the surface of the white dwarf, and it is a key area of interest for understanding energy release in these systems.
The dissertation discusses the Disk Instability (DI) model and the Mass Transfer Burst (MTB) model as primary theories for explaining these phenomena.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

