Masterarbeit, 2005
100 Seiten, Note: 1,0
This Master's thesis explores various statistical techniques for predicting bankruptcy. It aims to provide a comprehensive overview of different models, their strengths and weaknesses, and their applicability in predicting corporate failure.
The first chapter introduces the concept of bankruptcy prediction as a classification problem, outlining key considerations such as model types, explanatory variables, and performance measures. Chapter 2 delves into Discriminant Analysis, exploring its theoretical foundation, practical implementation, and limitations. Chapter 3 focuses on Conditional Probability Models, providing an in-depth analysis of their theoretical underpinnings, estimation methods, and significance testing. The thesis concludes with a summary and discussion of the findings, highlighting the implications for future research and practical applications.
The central focus of the thesis revolves around bankruptcy prediction, statistical techniques, classification, discriminant analysis, conditional probability models, model performance, data quality, and sampling considerations. Key models explored include logistic regression, probit models, and survival analysis. The thesis also examines the relevance of these techniques in the context of German and Ukrainian economies.
The importance grew due to "Basle-II" regulations, which require financial institutions to estimate the probability of default for their obligors to ensure financial stability.
Since stock market prices are unavailable for private firms, models rely on accounting information from financial statements, summarized in financial ratios like the leverage ratio.
The thesis covers Discriminant Analysis, Conditional Probability Models (Logit/Probit), Survival Analysis, CUSUM charts, and Artificial Neural Networks.
Structural models typically rely on stock market data and economic theory, while reduced/empirical models use statistical analysis of accounting data.
Yes, accounting-based models are particularly vital in emerging markets where capital markets are often illiquid and lack sufficient stock market data.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

