Bachelorarbeit, 2014
103 Seiten, Note: 1,0
This thesis aims to investigate the relationship between the size of a feature set and the performance of emotion recognition from speech signals. It compares different feature sets, including those from various paralinguistic challenges and the Institute for Signal Processing and System Theory (ISS), using various classifiers like Naive Bayes, k-Nearest-Neighbour, and Support Vector Machine.
This thesis explores the field of emotion recognition from speech signals using various feature sets and classifiers. The focus lies on comparing the effectiveness of different feature sets, analyzing the impact of feature set size on performance, and evaluating the suitability of various classifiers for this task. Key terms include emotion, features, classification, speech, Naive Bayes, k-Nearest-Neighbor, Support Vector Machine.
Emotion recognition works by extracting acoustic features like pitch, rhythm, and spectral energy and classifying them using machine learning algorithms.
It refers to the problem where increasing the number of features (dimensions) leads to a decrease in classifier performance unless the training data grows exponentially.
Popular choices include Support Vector Machines (SVM), Naive Bayes, and k-Nearest-Neighbors (kNN).
These are features derived from the frequency spectrum of the signal, helping to identify voice characteristics and emotional nuances.
The goal is to find the most relevant subset of features that provides the highest accuracy while reducing computational complexity.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

