Doktorarbeit / Dissertation, 2015
315 Seiten
The primary aim of this research project is to develop a comprehensive clinical decision support framework for cardiovascular preventative care by combining evidence extrapolated from legacy patient data and clinical experts knowledge encoded in the form of clinical rules. The objectives of this research are:
Key themes of this work include:
Chapter 2 provides a comprehensive literature review of clinical decision support systems, focusing on the use of ontologies, machine learning, and hybrid approaches in cardiovascular care. It also discusses the role of feature selection in clinical decision support systems.
Chapter 3 introduces a novel ontology and machine learning driven hybrid clinical decision support framework for cardiovascular preventative care. The framework consists of two key components: an ontology driven clinical risk assessment and recommendation system (ODCRARS) and a machine learning driven prognostic system (MLDPS). The chapter outlines the design and development of the framework.
Chapter 4 focuses on the design, development, and validation of the ODCRARS. It covers the ontology driven intelligent context aware information collection component, patient semantic profile, and the NICE/Expert driven clinical rules engine.
Chapter 5 discusses the design, development, and validation of the machine learning driven prognostic system (MLDPS) through clinical case studies in the RACPC, heart disease, and breast cancer domains. The chapter explores the use of various machine learning and feature selection techniques, including missing data handling methods.
Chapter 6 summarizes the findings of the thesis and discusses future directions for research. It includes potential applications of fuzzy cognitive maps and active manifold learning for collaborative care and big data analysis, respectively.
The main keywords of this thesis are: Clinical Decision Support Systems, Cardiovascular Preventative Care, Ontology, Machine Learning, Hybrid Clinical Decision Support Framework, Prognostic Modelling, Feature Selection, Missing Data, Big Data, Fuzzy Cognitive Maps, Active Manifold Learning, RACPC (Rapid Access Chest Pain Clinic), Heart Disease, Breast Cancer.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare