Bachelorarbeit, 2016
30 Seiten, Note: 8
The Dynamic Nelson-Siegel (DNS) model is a statistical model used for modeling and forecasting the term structure of interest rates, which is the relationship between bond yields and their maturities. It extends the static Nelson-Siegel model to a dynamic framework where the factors (level, slope, curvature) are assumed to be time-variant.
This study explores term structure modeling using the Dynamic Nelson-Siegel model, factor dynamics estimation using maximum likelihood and Kalman filtering, forecasting future yield curves, and developing a stochastic model for predicting yield curves based on a partial conjecture of future yields.
The primary dataset consists of zero-coupon German Bund yields obtained from Bloomberg, spanning from January 2, 1998, to March 9, 2016.
In the DNS model, the level factor represents the overall level of interest rates, the slope factor represents the difference between short-term and long-term rates, and the curvature factor captures the bend or curve in the yield curve.
The study utilizes Ordinary Least Squares (OLS) regression, Maximum Likelihood Estimation (MLE), Kalman Filtering, and Vector Autoregressive (VAR) models to analyze and forecast yield curves.
The Kalman Filter is a recursive algorithm used to estimate the state variables of a dynamic system from a series of incomplete and noisy measurements. In this study, it's used to estimate the factors of the Dynamic Nelson-Siegel model.
iDNS refers to the independent Dynamic Nelson-Siegel model, which assumes the factors (level, slope, and curvature) are independent of each other. cDNS refers to the correlated Dynamic Nelson-Siegel model, which relaxes this assumption and allows the factors to be correlated.
The Root Mean Squared Error (RMSE) is used as the primary metric for evaluating the accuracy of yield curve forecasts.
The cDNS model performs better in out-of-sample forecasting, possibly because it models the correlation environment of the factors, but the iDNS model does better in in-sample forecasting.
A stochastic model for the predicted yield curve can be created when a future yield with a certain maturity is known.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare