Forschungsarbeit, 2005
124 Seiten
This research work explores the dark matter phenomenon, focusing on an alternative theoretical concept that involves a boson field. The main objective is to investigate a special excitation effect observed in laboratory experiments, which could be linked to dark matter.
The introduction provides background information on the dark matter phenomenon, highlighting the lack of conclusive experimental evidence for its existence. The subsequent chapter proposes an alternative theoretical concept based on a boson field, offering a potential explanation for the stability of galaxies and other large-scale structures. The experimental design and methodology are detailed, outlining the setup for investigating the special excitation effect. Experimental results are presented, analyzing the patterns of emission observed in connection with different material samples. The chapter on experimental uncertainties addresses potential sources of error and limitations of the study. The discussion section elaborates on the findings, considering alternative explanations and the significance of the observed excitation effect. The conclusion summarizes the main findings and outlines future directions for research.
The research focuses on the dark matter phenomenon, exploring an alternative theoretical concept based on a boson field. The main keywords include dark matter, boson field, excitation effect, UV-VIS emission, experimental verification, and galaxy stability.
The paper explores an alternative concept based on a boson field, which might explain the stabilization and formation of galaxies instead of the traditional particle hypothesis (WIMPs).
The phenomenon was discovered in 1933 by Fritz Zwicky, who observed a stabilization effect in the Coma cluster of galaxies.
The research identified an excitation effect that occurs without a known form of excitation, detectable in material samples like granite inside a black body cavity.
The emission occurs in the spectral range of 160 – 630 nm at temperatures between 273 and 300 K.
No, the CDMS II experiment in 2004 could not confirm the existence of WIMPs (weakly interacting massive particles).
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

