Masterarbeit, 2014
101 Seiten, Note: 1,0
This Master thesis investigates the application of regime switching models to the mental accounting framework in portfolio optimization. The study aims to incorporate the dynamic nature of market conditions and investor behavior into asset allocation strategies.
The thesis begins with a review of relevant literature on mental accounting and dynamic investment management, exploring the relationship between investor behavior and portfolio construction. It then introduces regime switching models, particularly Hidden Markov Models (HMMs), and Gaussian Mixture Models (GMMs), as tools for capturing market dynamics. The main chapters delve into the application of these models to the mental accounting framework, outlining the problem formulation, scenario generation, decision policy, and backtesting procedures. The final chapters present the results of the analysis, including model calibration, scenario generation, asset allocation strategies, and backtesting performance evaluations.
The thesis focuses on the intersection of behavioral finance, quantitative finance, and dynamic asset allocation. Key keywords include Mental Accounting, Regime Switching Models, Hidden Markov Models, Gaussian Mixture Models, Stochastic Programming, Portfolio Optimization, Backtesting, and Risk Management.
The main goal is to combine regime switching models and the mental accounting framework into a unified framework for asset allocation, evaluating its performance and practical considerations.
The framework is implemented in approximately 1200 lines of efficient MATLAB code, which is publicly available on GitHub.
The thesis reviews Mental Accounting (MA), Markowitz’s Mean Variance Portfolio Theory (MVPT), stochastic programming, Hidden Markov Models (HMMs), and Gaussian Mixture Models (GMMs).
The model uses regime switching models, specifically Hidden Markov Models, to generate scenarios for a stochastic programming approach that captures dynamic market conditions.
Gaussian Mixture Models are used as a tool to create the expected distribution of asset returns, which is then used to optimize the asset allocation.
No, the framework is independent of the choice of assets. While the thesis uses specific data for illustration, the application is designed to be expandable to various investment approaches and asset numbers.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

