Masterarbeit, 2012
59 Seiten, Note: 10
The objective of this research is to evaluate the efficacy of using GLRLM features in offline handwritten signature verification. The study aims to develop a system that can reliably distinguish between genuine and forged signatures using a combination of statistical measures, Euclidean distances, and intra-class thresholds.
Chapter 1: Introduction provides an overview of the research topic, focusing on the motivation behind studying offline handwritten signature verification. It introduces biometrics, discussing its past, present, and future, and delves into personal and system-level criteria for biometric systems. The chapter concludes with a detailed outline of the thesis.
Chapter 2: Introduction to Signature Verification explores the field of pattern recognition and feature extraction in the context of handwritten signature verification. It distinguishes between online and offline signatures, providing a foundation for understanding the specific challenges and techniques involved in offline signature analysis.
The key terms and concepts central to this research include offline handwritten signature verification, GLRLM features, Euclidean distances, intra-class thresholds, forgery detection, statistical measures, biometric systems, pattern recognition, and feature extraction.
The research evaluates the use of GLRLM (Gray-Level Run Length Matrix) features to distinguish between genuine and forged offline handwritten signatures.
Online signatures are captured in real-time with timing and pressure data, while offline signatures are scanned images of static handwriting on paper.
By calculating Euclidean distances between GLRLM descriptors of a test signature and a known template, and comparing them against intra-class thresholds.
The study used a database of 525 genuine signatures and 30 forged signatures for training and testing.
GLRLM stands for Gray-Level Run Length Matrix, a feature extraction technique used in pattern recognition to analyze the texture and patterns of an image.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

