Masterarbeit, 2017
59 Seiten, Note: 90
This dissertation investigates the effects of strain on the band gap of the perovskite (CaTiO3) crystal using first-principles calculations. The study utilizes Density Functional Theory (DFT) under Local Density Approximation (LDA) and LDA with Hubbard potential (LDA+U), implemented with Quantum ESPRESSO code. The primary objective is to determine the optimized geometry and electronic properties of CaTiO3 while exploring the impact of inplane strain on its band gap and polarization.
The introduction provides a comprehensive overview of perovskite structures, focusing on the specific properties of CaTiO3. The study's scope and methodology are also outlined. Chapter 2 delves into the theoretical framework, discussing fundamental concepts like the Born-Oppenheimer approximation, the Hartree-Fock method, and Density Functional Theory. It further explores various exchange-correlation functionals and the LDA+U method. Chapter 3 presents details about the computational methods employed in the study, including the Quantum ESPRESSO code and convergence tests for key parameters. The subsequent chapters delve into the results and discussions, encompassing the impact of strain on the band gap, atomic displacements, and electronic band structure. These chapters compare findings obtained using both LDA and LDA+U methods, highlighting the differences in the calculated band gaps.
This dissertation focuses on the electronic structure and properties of the CaTiO3 perovskite crystal. The study explores the effects of inplane strain on the band gap, atomic displacements, and electronic band structure of this material. The research utilizes Density Functional Theory (DFT), employing both Local Density Approximation (LDA) and LDA with Hubbard potential (LDA+U) methods for calculations. The primary keywords include: Perovskite, CaTiO3, Band Gap, Strain, Density Functional Theory, LDA, LDA+U, Electronic Structure, Atomic Displacements, Quantum ESPRESSO.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare