Bachelorarbeit, 2017
93 Seiten, Note: 1.3
This thesis examines the application of Data Mining and Text Mining techniques to detect fraud in white-collar crime. The work aims to demonstrate the potential of these intelligent IT approaches in combating economic offenses. It explores how these techniques can be used to extract valuable insights from both structured and unstructured data, enabling the identification of fraudulent activities.
The main focus of this thesis lies in the intersection of white-collar crime, fraud detection, Data Mining, Text Mining, and Big Data. The study explores the use of intelligent IT approaches to identify and prevent economic offenses by analyzing both structured and unstructured data. Key concepts include credit card fraud, fraud management, machine learning algorithms, sampling techniques, and hyperparameter optimization.
Intelligent IT approaches like Data Mining and Text Mining can analyze large volumes of structured and unstructured data to identify patterns indicative of fraudulent activities.
Data Mining typically relies on structured data sources, while Text Mining is primarily concerned with extracting knowledge from weak- or unstructured data like emails or text documents.
The Fraud Triangle identifies three conditions necessary for an individual to commit fraud: Opportunity, Incentive/Pressure, and Rationalization/Attitude.
In the age of Big Data, companies store vast amounts of digital information. Since 80% of operational info is unstructured text, advanced mining techniques are essential to monitor this data for corruption or embezzlement.
Common types include credit card fraud, healthcare fraud, embezzlement, criminal insolvency, and corruption.
CRISP-DM is a standard methodical procedure used for data mining projects, guiding the process from business understanding to deployment.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

