Masterarbeit, 2017
111 Seiten, Note: 9.00
This work aims to predict the remaining useful life of various electronic components, specifically capacitors, resistors, and diodes. The research investigates the use of artificial intelligence techniques, such as artificial neural networks, fuzzy inference systems, and adaptive neuro-fuzzy inference systems, to develop reliable and accurate models for life prediction.
The introductory chapter establishes the importance of residual life prediction in ensuring the reliability of electronic systems and components. It defines the concept of residual life and explores the impact of various factors, including operating conditions and failure rates, on component lifetime. This chapter also provides an overview of different methods for predicting component life, including analytical and experimental approaches.
Chapter 2 presents a comprehensive literature review, summarizing existing research on residual life prediction of electronic components. This chapter explores various techniques, including artificial intelligence methods, and analyzes their strengths and limitations. It also highlights the importance of considering the specific characteristics of different component types.
Chapter 3 delves into the development of a robust methodology for estimating the remaining useful life of electronic components. It discusses the selection of components for life estimation, the utilization of experimental and analytical methods, and the integration of artificial intelligence techniques. This chapter also outlines the design of a decision support system and discusses the scope of the study.
Chapter 4 presents the practical implementation of the proposed methodology. It details the life estimation of capacitors, resistors, and diodes using both experimental (ALT) and artificial intelligence modeling approaches. This chapter provides insights into the effectiveness of various techniques and their application in real-world scenarios.
Chapter 5 focuses on the analysis of results obtained from different life prediction techniques. It compares the performance of analytical, experimental, and artificial intelligence methods and discusses the strengths and limitations of each approach. This chapter provides a comprehensive evaluation of the effectiveness of the developed decision support system.
This work focuses on residual life prediction, electronic components, artificial intelligence, life estimation, acceleration life testing, decision support systems, and fuzzy logic.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare