Masterarbeit, 2017
115 Seiten, Note: 78
This thesis explores the development of novel microwave photonic frequency multiplication techniques, specifically focusing on quadrupling, sextupling, and octupling schemes. The main objective is to demonstrate the potential of these techniques for generating high-frequency microwave signals with enhanced performance and efficiency. The research utilizes external modulation techniques based on dual parallel Mach Zehnder Modulators (DPMZMs) to achieve this goal.
The central focus of this research lies in the field of microwave photonics, specifically investigating frequency multiplication techniques utilizing external modulation. Key terms include fiber optics, Mach Zehnder modulator, laser, optical filter, Fibre Bragg grating, analogue electronics, and signal processing. The work explores novel schemes based on dual parallel Mach Zehnder Modulators (DPMZM) for achieving frequency quadrupling, sextupling, and octupling, aiming to optimize performance and efficiency in generating high-frequency microwave signals. The research further delves into the figure of merit for frequency multipliers, analyzing factors such as phase noise, tunability, system stability, and power loss.
It is a technique used to generate high-frequency microwave signals by multiplying a lower frequency input using optical components like lasers and modulators instead of traditional electronics.
Photonics offers low loss, compactness, immunity to electromagnetic interference (EMI), high system reliability, and the ability to process wideband signals.
A DPMZM is an integrated optical component used for external modulation. It allows for advanced signal processing, such as carrier suppression, without needing electrical or optical phase shifters.
The study proposes novel schemes using single or cascaded DPMZMs to suppress unwanted harmonics and the carrier, effectively multiplying the input frequency by four (quadrupling) or eight (octupling).
Key performance indicators include phase noise, frequency tunability, system stability, and power loss.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

