Doktorarbeit / Dissertation, 2018
138 Seiten
This thesis focuses on reducing the computational requirements of the nearest neighbor classifier, a fundamental algorithm in pattern recognition and machine learning. The primary objective is to develop and evaluate efficient techniques for improving the computational efficiency of the nearest neighbor classifier, particularly in handling large datasets.
The key themes explored in this thesis include nearest neighbor classifier, computational efficiency, data dimensionality reduction, feature selection, feature extraction, pattern recognition, machine learning, and performance evaluation.
It is a simple, non-parametric algorithm used in pattern recognition that classifies a data point based on the majority class of its closest neighbors in the data set.
As datasets grow, the time and memory required to calculate distances between points increase significantly, making it slow for large-scale applications.
By reducing the size of the data set (fewer samples) and reducing the number of features (dimensionality reduction) without significantly degrading performance.
It is the process of selecting or extracting the most relevant features from a dataset to simplify the classification task and speed up processing.
Yes, despite its age (dating back to the 1950s), it remains a popular and effective baseline for many machine learning and data mining tasks.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

