Masterarbeit, 2018
74 Seiten, Note: 1,0
This master's thesis investigates the prediction of heating energy consumption in residential buildings, focusing on the use of data-driven methods. The primary objective is to evaluate the effectiveness of a D-vine copula-based quantile regression model in predicting heating energy consumption based on historical data from German households. The study explores the potential of this model to overcome the "performance gap" between predicted and actual energy consumption, a persistent issue in traditional building energy models.
The study focuses on data-driven methods for the prediction of heating energy consumption in residential buildings, specifically exploring the use of D-vine copula-based quantile regression. Key themes include the performance gap between predicted and actual energy consumption, the rebound effect, and the application of these methods to support policy-making and investment decisions in the energy sector.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare