Masterarbeit, 2007
122 Seiten
This dissertation aims to develop a consumer loan credit risk analyser using neural networks. The research explores the application of artificial neural networks, specifically feed-forward backpropagation and radial basis function networks, to predict credit risk. The study compares the performance of these neural network models with statistical methods for credit risk analysis.
1. INTRODUCTION: This introductory chapter sets the stage for the dissertation. It establishes the necessity for improved consumer loan credit risk assessment, outlining the objectives of the research and the overall theme. The chapter also provides a brief overview of the report's structure, guiding the reader through the subsequent chapters. The introduction highlights the growing importance of accurate credit risk prediction in the financial sector and positions neural networks as a potential solution to improve existing methods.
2. LITERATURE SURVEY: This chapter provides a comprehensive review of existing literature on artificial neural networks and their applications, particularly in credit risk analysis. It begins with a discussion of the biological basis of neural networks, moving to their application in information processing systems. The chapter details the historical development of neural networks, contrasting their functionality with conventional computing. It explores various types of neural networks, focusing on feed-forward networks, backpropagation networks, and radial basis function networks, explaining the learning processes involved. The chapter concludes by establishing a theoretical foundation for the research methods employed later in the dissertation. The emphasis is on establishing a thorough understanding of neural network architectures, their strengths, and their limitations, especially when it comes to prediction problems.
3. DEVELOPMENT OF SYSTEM: This chapter focuses on the practical implementation of the credit risk analysis system. It provides an overview of MATLAB, the software used for development, highlighting its advantages and disadvantages for this specific application. A detailed explanation of the Neural Network Toolbox in MATLAB is given, outlining its key features and how it was utilized in the project. The chapter further describes the data preprocessing techniques applied to the dataset used for training and testing the neural network models. Crucially, it details the implementation of both the feed-forward backpropagation network and the radial basis function network, along with the learning algorithms used (TRAINRP). It concludes with a precise description of the developed consumer loan risk analysis system, setting the stage for the performance analysis in the next chapter. The detailed description allows reproducibility of the research.
4. PERFORMANCE ANALYSIS: This chapter presents the results of the experimental analysis conducted on the developed credit risk analysis system. It details the performance of both the feed-forward backpropagation and radial basis function networks, comparing their performance on different dataset sizes (500 and 44 records). A thorough comparison is made between the performance of these neural network models and traditional statistical methods for credit risk assessment. The chapter presents a detailed comparison of the results, examining training and testing accuracy, and discusses potential reasons for any observed differences in performance between the methods. Statistical measures are likely employed to support the analysis. The chapter concludes with a justification for any discrepancies found between the experimental and statistical methods, providing insights into the relative strengths and weaknesses of each approach.
Consumer loan credit risk, neural networks, feed-forward backpropagation, radial basis function network, credit risk analysis, MATLAB, performance analysis, statistical methods, machine learning, risk prediction.
Diese Language Preview bietet einen umfassenden Überblick über ein Dokument, einschließlich Titel, Inhaltsverzeichnis, Zielsetzung und Themenschwerpunkte, Kapitelzusammenfassungen und Schlüsselwörter. Es handelt sich um OCR-Daten, die ausschließlich für akademische Zwecke bestimmt sind, um Themen strukturiert und professionell zu analysieren.
Die Dissertation zielt darauf ab, einen Kreditrisikoanalysator für Konsumentenkredite unter Verwendung neuronaler Netze zu entwickeln. Die Forschung untersucht die Anwendung künstlicher neuronaler Netze, insbesondere Feed-Forward-Backpropagation- und Radial-Basis-Funktionsnetze, zur Vorhersage von Kreditrisiken. Die Studie vergleicht die Leistung dieser neuronalen Netzmodelle mit statistischen Methoden zur Kreditrisikoanalyse.
Die Dissertation ist in fünf Hauptkapitel unterteilt:
Die Dissertation konzentriert sich auf zwei Haupttypen neuronaler Netze: Feed-Forward-Backpropagation-Netze und Radial-Basis-Funktionsnetze. Die Leistung dieser beiden Netzwerktypen wird verglichen und analysiert.
MATLAB wurde zur Entwicklung des Kreditrisikoanalysesystems verwendet. Die Neural Network Toolbox von MATLAB wurde dabei intensiv genutzt.
Die wichtigsten Schlüsselwörter sind: Konsumentenkreditrisiko, neuronale Netze, Feed-Forward-Backpropagation, Radial-Basis-Funktionsnetz, Kreditrisikoanalyse, MATLAB, Leistungsanalyse, statistische Methoden, maschinelles Lernen, Risikovorhersage.
Die Hauptziele der Dissertation sind:
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare