Doktorarbeit / Dissertation, 2019
184 Seiten, Note: 96.50
This dissertation aims to demonstrate the effectiveness of the Euler-Lagrange method in solving optimal control problems. It delves into the theoretical foundations of optimal control and the Euler-Lagrange method, exploring its historical development and various applications.
Chapter One provides an introduction to the study, outlining the background, problem statement, aims, scope, significance, research questions, and methodology. It establishes the context for the dissertation and introduces the key concepts and objectives.
Chapter Two offers a comprehensive literature review, covering the essential concepts of optimal control problems, their types, historical background, and diverse applications. It also delves into the theory behind the Euler-Lagrange method, a pivotal technique for solving optimal control problems.
Chapter Three elaborates on the methodology employed in the dissertation. It details the formulation of the problem, the derivation of the Euler-Lagrange equation, and the Hamiltonian approach to solving optimal control problems.
Chapter Four presents and analyzes the results obtained by applying the Euler-Lagrange method to real-world optimal control problems. The chapter includes a detailed discussion of the findings and their implications.
This dissertation explores the application of the Euler-Lagrange method to optimal control problems, focusing on key themes like theoretical foundations, historical development, diverse applications, and the formulation and solution of real-world control problems. The work emphasizes the use of the Euler-Lagrange equation and the Hamiltonian approach to solve these problems, providing a comprehensive analysis of the results and their implications.
It is a modification of the Calculus of Variation Method used for solving optimal control problems in both one-dimensional and generalized forms.
The Euler-Lagrange Method circumvents difficulties in constructing control operators required by CGM, showing improved results in several test problems.
The Hamiltonian approach is part of the methodology used to formulate and solve optimal control problems alongside the Euler-Lagrange equation.
The research aims to demonstrate the effectiveness of the Euler-Lagrange method, analyze its theoretical foundations, and evaluate its application on real-world control problems.
Optimal control has diverse applications in engineering, economics, and mathematics where functional optimization is required.
The study showed that for most test problems, the Euler-Lagrange results were highly consistent with or improved upon existing computational results.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

