Masterarbeit, 2014
76 Seiten
This dissertation aims to develop an automatic and quantitative IgE concentration detection algorithm for use in a self-designed allergen disease diagnosis system. It focuses on improving the accuracy and efficiency of allergy diagnosis through image processing techniques applied to ELISA results.
Chapter 1 introduces the prevalence of allergic diseases and discusses current methods of allergy diagnosis, highlighting their limitations. The chapter outlines the aim of the study, which focuses on developing a new, automated and quantitative IgE detection algorithm for a self-designed allergen disease diagnosis system. Chapter 2 details the materials and methods used in the study, including the ELISA technique and image processing techniques. Chapter 3 presents the results and analysis of the experiments, focusing on the relationship between IgE concentration and different image features. Chapter 4 discusses the findings, particularly the effect of system environment on IgE detection and the comparison of various image features in different color models.
This study explores the use of image processing techniques for quantitative IgE detection in allergen disease diagnosis. The primary keywords are Allergic disease, Automatic Diagnosis, IgE, ELISA, and Quantitative Detection. The study utilizes various color models and image features to analyze the relationship between IgE concentration and the resulting images, aiming to create a more accurate and efficient diagnostic system.
The study focuses on developing an automatic, quantitative algorithm that uses image processing to detect IgE levels in ELISA tests, improving the accuracy of allergy diagnosis.
Environmental factors like wet conditions or the type of plastic container can change the detected color of the allergen card, potentially leading to inaccurate IgE concentration values.
ELISA is chosen because it meets essential criteria: it is highly sensitive, accurate, and cost-effective compared to other diagnostic methods.
The study explores various color models and features, such as Gray Value, Multi Spectral Area, and Color Difference, to find features that are least influenced by the system environment.
The study highlights that allergic diseases affect a large number of people worldwide every year, making efficient and affordable diagnostic tools a priority for public health.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

