Bachelorarbeit, 2016
65 Seiten, Note: 1,00
This bachelor thesis aims to develop a taxonomy of a business model for developing a new decision tree algorithm for the mobility market. It explores the application of Open Innovation within this business model concept.
The thesis begins with an introduction to the problem statement, motivation, background, and methodology used. It then delves into the concept of Big and Fast Data, explaining its significance and challenges in the context of the mobility market. Chapter 3 focuses on decision tree algorithms, providing an overview of various classification trees and their application in fast data environments. The preliminary business model is discussed in Chapter 4, introducing the principles of Open Innovation and outlining the step-by-step development of the model concept. Explorative research methods, including case studies and expert interviews, are explored in Chapter 5. The thesis concludes with a detailed explanation of the business model adaption, which incorporates insights from the research conducted.
The thesis focuses on the following key concepts: decision tree algorithms, Open Innovation, business model canvas, fast data, serious gaming, and automotive industry. It utilizes these key concepts to explore the potential of a business model for developing a new decision tree algorithm for the mobility market.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare