Doktorarbeit / Dissertation, 2014
122 Seiten
The book explores the use of spline methods to approximate solutions to various boundary value problems in ordinary differential equations. The primary focus is on applying both polynomial and non-polynomial spline techniques to linear and nonlinear boundary value problems of different orders.
Chapter 1 provides a comprehensive overview of boundary value problems, their significance in various scientific disciplines, and a detailed review of existing numerical methods. It also introduces the concepts of spline functions and their properties, particularly focusing on cubic and non-polynomial splines.
Chapter 2 delves into the application of non-polynomial spline techniques for solving linear second-order boundary value problems. It presents a numerical method based on non-polynomial splines, demonstrating its efficiency and accuracy through numerical examples.
Chapter 3 extends the non-polynomial spline method to approximate solutions for second-order nonlinear boundary value problems. The chapter provides examples showcasing the method's effectiveness in handling various types of nonlinear problems.
Chapter 4 focuses on solving fifth-order boundary value problems, which often arise in viscoelastic flow modeling. The chapter presents numerical methods using sixth and seventh degree spline functions to approximate solutions, demonstrating their accuracy and efficiency.
Chapter 5 addresses sixth-order boundary value problems, relevant in astrophysics and other fields. It presents numerical methods based on seventh and eighth degree spline functions, highlighting their comparative performance and accuracy against other known techniques.
Chapter 6 summarizes the key findings and contributions of the book, drawing conclusions about the efficacy of the developed spline methods. It also explores potential directions for future research, including extending these methods to higher-order problems and partial differential equations.
The main keywords and topics covered in the book include boundary value problems, spline methods, non-polynomial splines, ordinary differential equations, numerical solutions, linear and nonlinear problems, higher-order problems, accuracy, efficiency, and applications in diverse scientific disciplines.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!
Kommentare