Masterarbeit, 2020
75 Seiten, Note: 2,0
This thesis work investigates the suitability of Manufacturing-Execution-System (MES) functions for Artificial Intelligence (AI) support. It aims to develop an assessment framework consisting of criteria and indicators to evaluate the AI readiness of MES functions. The work also includes a case study to assess the validity and reliability of the developed framework.
The introduction presents the background and problem description, outlining the increasing complexity of manufacturing environments and the need for data-driven decision-making. It also states the purpose and research questions of the thesis, which focus on developing an assessment framework for AI-supported MES functions. Chapter 2 provides a theoretical background, discussing relevant concepts such as MES, intelligent manufacturing, overall equipment effectiveness (OEE), and AI methodologies like machine learning. Chapter 3 focuses on the research approach and process, including literature overview, criteria and indicator selection, and assessment methodologies. It also outlines the case study used to evaluate the assessment framework. Chapter 4 presents the findings and analysis, detailing the assessment framework, criteria and indicators, and the results of the case study. Finally, chapter 5 discusses the findings and conclusions, addressing the implications for academia and industry, and proposing directions for future research.
The thesis work focuses on the intersection of Manufacturing-Execution-System (MES), Artificial Intelligence (AI), and intelligent manufacturing. Key concepts include assessment frameworks, AI suitability, assessment methodologies, and the application of AI in the context of MES functions for optimizing manufacturing processes and improving overall equipment effectiveness (OEE).
MES stands for Manufacturing-Execution-System. It is a system used to manage and monitor work-in-progress on the factory floor, providing real-time data to optimize production processes.
AI can enhance MES by enabling predictive maintenance, optimizing production schedules, and improving Overall-Equipment-Effectiveness (OEE) through machine learning and neural networks.
AI readiness refers to whether a specific MES function has the necessary data quality, infrastructure, and process suitability to be effectively supported or automated by AI algorithms.
The framework provides decisive criteria and indicators to help MES providers and manufacturers evaluate whether embedding AI into a specific function is worth the investment of resources.
A Digital Twin is a virtual representation of a physical manufacturing process. It works with MES and AI to simulate scenarios and improve decision-making without disrupting actual production.
The framework was tested through a case study in an industrial setting to ensure its validity, reliability, and pragmatic usability for manufacturing professionals.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

