Masterarbeit, 2019
57 Seiten, Note: 1.3
This master thesis aims to analyze the flow fields in the FDA's "Critical Path" benchmark blood pump, contributing to the advancement of Computational Fluid Dynamics (CFD) in biomedical applications. The work focuses on validating the efficiency of computer simulations for the development and optimization of Ventricular Assist Devices (VADs), specifically blood pumps.
The thesis begins with an introduction to VADs, their history, and the role of CFD in their development. Chapter 2 provides a literature review on blood, blood rheology, blood damage, and numerical hemolysis prediction. Chapter 3 details the turbulence modeling used, specifically the RANS/URANS approach and the Shear Stress Transport model. The pre-processing stage, including the structure of the FDA blood pump and the mesh generation process, is outlined in Chapter 5. Chapter 6 discusses the computational methods used. Finally, Chapter 7 presents the results and discussion of the simulation, including convergence, pressure head, flow field analysis, and hemolysis prediction.
The key terms and concepts explored in this thesis include Computational Fluid Dynamics (CFD), Ventricular Assist Device (VAD), blood pump, block-structured hexahedral mesh, URANS, k-w SST, hemolysis, Power Law, stress-based model, and Eulerian approach.
It is a standardized pump model sponsored by the FDA to validate the accuracy and efficiency of computer simulations in biomedical applications.
Computational Fluid Dynamics (CFD) is used to examine blood flow dynamics and minimize damage to blood cells, making these life-saving devices more robust and biocompatible.
Hemolysis refers to the damage or rupture of red blood cells caused by high shear stresses within the pump, which simulations aim to predict and reduce.
The study utilized the k-ω SST (Shear Stress Transport) turbulence model for an unsteady incompressible blood flow simulation.
A block-structured hexahedral mesh was created using ANSYS ICEM CFD 15.0 based on an open-source CAD model.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

