Doktorarbeit / Dissertation, 2020
134 Seiten
This book aims to provide a comprehensive guide to the application of data mining techniques for facilitating decision support, focusing on the use of hierarchical multi-attribute decision models. The book explores the various aspects of data mining and decision support systems, including the KDD process, data mining functionalities, and the integration of multi-attribute decision models.
Chapter 1 provides an introduction to data mining and decision support systems, exploring the KDD process, data mining functionalities, and the role of multi-attribute decision models. The chapter covers the different stages involved in the KDD process, including data selection, data transformation, algorithm selection, and evaluation. It also discusses various data mining functionalities, such as classification, prediction, and association rule mining. The chapter concludes by highlighting the importance of data mining in today's data-driven world and its role in enhancing decision-making.
Data mining, decision support, multi-attribute decision models, hierarchical models, KDD process, data transformation, algorithm selection, classification, prediction, association rule mining.
KDD is the overall process of discovering useful knowledge from data. It includes steps like data selection, pre-processing, transformation, data mining, and finally the evaluation and interpretation of patterns.
Key functionalities include concept/class description, association rule mining, classification, and prediction. These help businesses draw support for decision-making and profit optimization.
These models structure complex decisions by breaking them down into multiple attributes and levels. The research proposes a new algorithm using an "impact factor" to improve classification accuracy over traditional information gain methods.
The proposed algorithm introduces a classified impact factor to resolve conflicts where attributes might bias towards a random class, ensuring more reliable decision tree learning.
Existing algorithms often struggle with missing values and attribute bias. New models are needed to handle the vast hidden knowledge in large information repositories more effectively.
Der GRIN Verlag hat sich seit 1998 auf die Veröffentlichung akademischer eBooks und Bücher spezialisiert. Der GRIN Verlag steht damit als erstes Unternehmen für User Generated Quality Content. Die Verlagsseiten GRIN.com, Hausarbeiten.de und Diplomarbeiten24 bieten für Hochschullehrer, Absolventen und Studenten die ideale Plattform, wissenschaftliche Texte wie Hausarbeiten, Referate, Bachelorarbeiten, Masterarbeiten, Diplomarbeiten, Dissertationen und wissenschaftliche Aufsätze einem breiten Publikum zu präsentieren.
Kostenfreie Veröffentlichung: Hausarbeit, Bachelorarbeit, Diplomarbeit, Dissertation, Masterarbeit, Interpretation oder Referat jetzt veröffentlichen!

